Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      June 4, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      June 4, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      June 4, 2025

      How To Prevent WordPress SQL Injection Attacks

      June 4, 2025

      Players aren’t buying Call of Duty’s “error” excuse for the ads Activision started forcing into the game’s menus recently

      June 4, 2025

      In Sam Altman’s world, the perfect AI would be “a very tiny model with superhuman reasoning capabilities” for any context

      June 4, 2025

      Sam Altman’s ouster from OpenAI was so dramatic that it’s apparently becoming a movie — Will we finally get the full story?

      June 4, 2025

      One of Microsoft’s biggest hardware partners joins its “bold strategy, Cotton” moment over upgrading to Windows 11, suggesting everyone just buys a Copilot+ PC

      June 4, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      LatAm’s First Databricks Champion at Perficient

      June 4, 2025
      Recent

      LatAm’s First Databricks Champion at Perficient

      June 4, 2025

      Beyond AEM: How Adobe Sensei Powers the Full Enterprise Experience

      June 4, 2025

      Simplify Negative Relation Queries with Laravel’s whereDoesntHaveRelation Methods

      June 4, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Players aren’t buying Call of Duty’s “error” excuse for the ads Activision started forcing into the game’s menus recently

      June 4, 2025
      Recent

      Players aren’t buying Call of Duty’s “error” excuse for the ads Activision started forcing into the game’s menus recently

      June 4, 2025

      In Sam Altman’s world, the perfect AI would be “a very tiny model with superhuman reasoning capabilities” for any context

      June 4, 2025

      Sam Altman’s ouster from OpenAI was so dramatic that it’s apparently becoming a movie — Will we finally get the full story?

      June 4, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Model Compression Without Compromise: Loop-Residual Neural Networks Show Comparable Results to Larger GPT-2 Variants Using Iterative Refinement

    Model Compression Without Compromise: Loop-Residual Neural Networks Show Comparable Results to Larger GPT-2 Variants Using Iterative Refinement

    April 16, 2025

    The transformer architecture has revolutionized natural language processing, enabling models like GPT to predict the next token in a sequence efficiently. However, these models suffer from a fundamental limitation of performing a one-pass projection of all previous tokens to predict the next token, which restricts their capacity for iterative refinement. Transformers apply constant computational effort regardless of the complexity or ambiguity of the predicted token, lacking mechanisms to reconsider or refine their predictions. Traditional neural networks, including transformers, map input sequences to predict in a single forward pass, processing inputs through multiple layers to refine internal representations.

    Universal Transformers introduced the recurrent application of transformer layers to capture short-term and long-term dependencies by iteratively refining representations. However, experiments were limited to smaller models and datasets rather than large-scale language models like GPT-2. Adaptive Computation Time models allowed dynamic determination of computational steps per input but are mainly applied to simple RNN architectures and tested on small-scale tasks without using transformer architecture or large-scale pretraining. Depth-Adaptive Transformers adjusted network depth based on input, enabling dynamic inference by selecting the number of layers to apply per input sequence. However, these approaches lack the predictive residual design found in more advanced architectures.

    Researchers from HKU have proposed a novel Loop-Residual Neural Network that revisits input multiple times, refining predictions by iteratively looping over a subset of the model with residual connections. It improves transformer performance with longer inference times using a novel loop architecture with residual prediction. This approach works effectively for large neural networks without requiring extra training data, extending the model’s approximation capacity. Its effectiveness is shown through experiments comparing standard GPT-2 versions with Loop-Residual models. Notably, their GPT-2-81M model achieves a validation loss of 3.11 on the OpenWebText dataset, comparable to the GPT-2-124M model’s loss of 3.12.

    The Loop-Residual involves two experiments. First, a Loop-Residual GPT-2 model with 81M parameters (GPT2-81M) is compared with the GPT-2 model with 124M parameters (GPT2-124M). While GPT2-124M consists of 12 transformer layers as the baseline, the Loop-Residual GPT2-81M uses 6 loops over 6 transformer layers. The second experiment compares a Loop-Residual GPT-2 with 45M parameters (GPT2-45M) to a Lite GPT-2 model of identical size (GPT2-45M-Lite). The GPT2-45M-Lite features a single transformer block layer for one-pass prediction, while the Loop-Residual version loops twice over a single transformer block. Both experiments use the OpenWebText dataset with measured training epoch times of 150ms for GPT2-45M-Lite, 177ms for Loop-Residual GPT2-45M, and 1,377ms for GPT2-81M.

    In the first experiment, the Loop-Residual GPT2-81M model achieves a validation loss of 3.11 on the OpenWebText dataset, comparable to the GPT2-124M model’s loss of 3.12. This result is significant because the Loop-Residual model uses 35% fewer parameters and half the number of unique layers compared to the GPT2-124M model. This shows that iterative refinement through the loop-residual mechanism enhances the model’s approximation capacity. In the second experiment, the Loop-Residual model achieves a validation loss of 3.67 compared to 3.98 and a training loss of 3.65 compared to 3.96. By looping twice over a single transformer block, the model effectively simulates a deeper network, resulting in substantial performance gains over the one-pass baseline without increasing model size.

    In conclusion, researchers introduced the Loop-Residual Neural Network, which enables smaller neural network models to achieve better results on lower-end devices by utilizing longer inference times through iterative refinement. This method captures complex patterns and dependencies more effectively than conventional one-pass models. Experiments show that Loop-Residual models can achieve improved performance over baseline models of the same size and comparable performance to larger models with fewer parameters. The future direction includes new possibilities for neural network architectures, especially for tasks that benefit from deeper computational reasoning on resource-constrained devices.


    Here is the Paper. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 90k+ ML SubReddit.

    🔥 [Register Now] miniCON Virtual Conference on AGENTIC AI: FREE REGISTRATION + Certificate of Attendance + 4 Hour Short Event (May 21, 9 am- 1 pm PST) + Hands on Workshop

    The post Model Compression Without Compromise: Loop-Residual Neural Networks Show Comparable Results to Larger GPT-2 Variants Using Iterative Refinement appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleMIT Researchers Introduce DISCIPL: A Self-Steering Framework Using Planner and Follower Language Models for Efficient Constrained Generation and Reasoning
    Next Article Mailmodo Free Email Signature Generator

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    June 4, 2025
    Machine Learning

    IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2025

    June 4, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    CVE-2025-23104 – Samsung Mobile Processor Exynos Use-After-Free Privilege Escalation Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    How to get Open NAT on Xbox Series X|S, Xbox One with port forwarding

    Development

    Error’d: Monkeys

    News & Updates
    Xbox’s The Outer Worlds 2 gets a new look at gameplay, showing combat, stealth, and more

    Xbox’s The Outer Worlds 2 gets a new look at gameplay, showing combat, stealth, and more

    News & Updates

    Highlights

    CVE-2025-37784 – Linux Kernel Ti Net IEP NULL Pointer Dereference Vulnerability

    May 1, 2025

    CVE ID : CVE-2025-37784

    Published : May 1, 2025, 2:15 p.m. | 1 hour, 10 minutes ago

    Description : In the Linux kernel, the following vulnerability has been resolved:

    net: ti: icss-iep: Fix possible NULL pointer dereference for perout request

    The ICSS IEP driver tracks perout and pps enable state with flags.
    Currently when disabling pps and perout signals during icss_iep_exit(),
    results in NULL pointer dereference for perout.

    To fix the null pointer dereference issue, the icss_iep_perout_enable_hw
    function can be modified to directly clear the IEP CMP registers when
    disabling PPS or PEROUT, without referencing the ptp_perout_request
    structure, as its contents are irrelevant in this case.

    Severity: 0.0 | NA

    Visit the link for more details, such as CVSS details, affected products, timeline, and more…

    Audeze continues to push into the mainstream with these high-end audiophile headphones, and I love them

    February 8, 2025

    Windows warning: Don’t delete that weird ‘inetpub’ folder. Already did? Here’s your fix

    April 14, 2025

    Microsoft admits Windows 11 24H2 broke Remote desktop, rolls out fix

    March 26, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.