Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Top 10 Use Cases of Vibe Coding in Large-Scale Node.js Applications

      September 3, 2025

      Cloudsmith launches ML Model Registry to provide a single source of truth for AI models and datasets

      September 3, 2025

      Kong Acquires OpenMeter to Unlock AI and API Monetization for the Agentic Era

      September 3, 2025

      Microsoft Graph CLI to be retired

      September 2, 2025

      ‘Cronos: The New Dawn’ was by far my favorite experience at Gamescom 2025 — Bloober might have cooked an Xbox / PC horror masterpiece

      September 4, 2025

      ASUS built a desktop gaming PC around a mobile CPU — it’s an interesting, if flawed, idea

      September 4, 2025

      Hollow Knight: Silksong arrives on Xbox Game Pass this week — and Xbox’s September 1–7 lineup also packs in the horror. Here’s every new game.

      September 4, 2025

      The Xbox remaster that brought Gears to PlayStation just passed a huge milestone — “ending the console war” and proving the series still has serious pulling power

      September 4, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Magento (Adobe Commerce) or Optimizely Configured Commerce: Which One to Choose

      September 4, 2025
      Recent

      Magento (Adobe Commerce) or Optimizely Configured Commerce: Which One to Choose

      September 4, 2025

      Updates from N|Solid Runtime: The Best Open-Source Node.js RT Just Got Better

      September 3, 2025

      Scale Your Business with AI-Powered Solutions Built for Singapore’s Digital Economy

      September 3, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      ‘Cronos: The New Dawn’ was by far my favorite experience at Gamescom 2025 — Bloober might have cooked an Xbox / PC horror masterpiece

      September 4, 2025
      Recent

      ‘Cronos: The New Dawn’ was by far my favorite experience at Gamescom 2025 — Bloober might have cooked an Xbox / PC horror masterpiece

      September 4, 2025

      ASUS built a desktop gaming PC around a mobile CPU — it’s an interesting, if flawed, idea

      September 4, 2025

      Hollow Knight: Silksong arrives on Xbox Game Pass this week — and Xbox’s September 1–7 lineup also packs in the horror. Here’s every new game.

      September 4, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Balancing Accuracy and Efficiency in Language Models: A Two-Phase RL Post-Training Approach for Concise Reasoning

    Balancing Accuracy and Efficiency in Language Models: A Two-Phase RL Post-Training Approach for Concise Reasoning

    April 11, 2025
    Balancing Accuracy and Efficiency in Language Models: A Two-Phase RL Post-Training Approach for Concise Reasoning

    Recent advancements in LLMs have significantly enhanced their reasoning capabilities, particularly through RL-based fine-tuning. Initially trained with supervised learning for token prediction, these models undergo RL post-training, exploring various reasoning paths to arrive at correct answers, similar to how an agent navigates a game. This process leads to emergent behaviors such as self-correction, often called the “aha moment,” where models begin revising their mistakes without explicit instruction. While this improves accuracy, it also results in much longer responses, increasing token usage, computational costs, and latency. Despite assumptions that longer outputs equate to better reasoning, research shows mixed results—some improvements are seen, but excessively lengthy answers can also reduce performance, indicating diminishing returns.

    Researchers are exploring ways to balance reasoning quality and efficiency to address this. Methods include using smaller, faster models, applying prompt engineering to reduce verbosity, and developing reward-shaping techniques encouraging concise yet effective reasoning. One notable approach is long-to-short distillation, where models learn from detailed explanations and are trained to produce shorter yet accurate answers. Using these techniques, models like Kimi have demonstrated competitive performance even against larger models like GPT-4 while consuming fewer tokens. Studies also highlight the concept of “token complexity,” showing that problems require a minimum token threshold for accurate resolution, and prompt strategies aimed at conciseness often fall short of this optimal point. Overall, the findings emphasize the importance of developing more efficient reasoning methods without compromising performance.

    Researchers from Wand AI challenge the belief that longer responses inherently lead to better reasoning in large language models. Through theoretical analysis and experiments, they show that this verbosity is a by-product of RL optimization rather than a necessity for accuracy. Interestingly, concise answers often correlate with higher correctness, and correct responses are shorter than incorrect ones. They propose a two-phase RL training approach: The first phase enhances reasoning ability, while the second enforces conciseness using a small dataset. This method reduces response length without sacrificing accuracy, offering improved efficiency and performance with minimal computational cost.

    Longer responses do not always lead to better performance in language models. RL post-training tends to reduce response length while maintaining or improving accuracy, especially early in training. This counters the belief that long reasoning chains are necessary for correctness. The phenomenon is tied to “deadends,” where excessively long outputs risk veering off-course. Analyzing language tasks as Markov Decision Processes reveals that RL minimizes loss, not length, and longer outputs only arise when rewards are consistently negative. A two-phase RL strategy—first on hard problems, then on solvable ones—can boost reasoning while eventually promoting conciseness and robustness.

    The two-phase RL strategy led to notable performance gains across different model sizes. Training on varying difficulty levels showed that easier problems helped models shorten responses while maintaining or improving accuracy. A second RL phase using just eight math problems produced more concise and robust outputs across benchmarks like AIME, AMC, and MATH-500, with similar trends seen in STEM tasks from MMLU. Even minimal RL post-training improved accuracy and stability under low-temperature sampling. Furthermore, models without prior RL refinement, such as Qwen-Math-v2.5, showed large accuracy boosts—up to 30% from training on only four math problems.

    In conclusion, the study presents a two-phase RL post-training method that improves reasoning and conciseness in language models. The first phase enhances accuracy, while the second focuses on shortening responses without sacrificing performance. Applied to R1 models, this approach reduced response length by over 40% while maintaining accuracy, especially at low temperatures. The findings reveal that longer answers are not inherently better and that targeted RL can achieve concise reasoning. The study also highlights that even minimal RL training can greatly benefit non-reasoning models, emphasizing the value of including moderately solvable problems and carefully tuning PPO parameters.


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 85k+ ML SubReddit.

    🚨 ]Recommended Read] Boson AI Introduces Higgs Audio Understanding and Higgs Audio Generation Achieving top scores (60.3 average on AirBench Foundation) with its reasoning enhancements [Sponsored]

    The post Balancing Accuracy and Efficiency in Language Models: A Two-Phase RL Post-Training Approach for Concise Reasoning appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleNvidia Released Llama-3.1-Nemotron-Ultra-253B-v1: A State-of-the-Art AI Model Balancing Massive Scale, Reasoning Power, and Efficient Deployment for Enterprise Innovation
    Next Article RoR-Bench: Revealing Recitation Over Reasoning in Large Language Models Through Subtle Context Shifts

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    September 3, 2025
    Machine Learning

    Announcing the new cluster creation experience for Amazon SageMaker HyperPod

    September 3, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    19 Beautiful Themes to Get a Better Visual Experience With VS Code

    Linux

    CodeRabbit brings AI-powered code review into Visual Studio Code

    Tech & Work

    CVE-2025-6002 – VirtueMart Unrestricted File Upload Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    SVG Files Weaponized: Phishing Attacks Embed HTML Code

    Security

    Highlights

    Linux

    Rilasciato Labwc 0.9: Il compositore Wayland ispirato a Openbox

    July 13, 2025

    Labwc è un compositore Wayland leggero che si ispira a Openbox, noto per la sua…

    Grounded 2 needed to happen, and I’m so glad it did — because now I can ride a giant ant into battle

    July 29, 2025

    Miracle-WM 0.6 Released with Further Refinements

    July 9, 2025

    CVE-2025-52896 – Frappe Cross-Site Scripting (XSS) via Data Import Vulnerability

    June 30, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.