This paper was accepted at the Scalable Continual Learning for Lifelong Foundation Models (SCLLFM) Workshop at NeurIPS 2024.
Large Language Models (LLMs) trained on historical web data inevitably become outdated. We investigate evaluation strategies and update methods for LLMs as new data becomes available. We introduce a web-scale dataset for time-continual pretraining of LLMs derived from 114 dumps of Common Crawl (CC) – orders of magnitude larger than previous continual language modeling benchmarks. We also design time-stratified evaluations across both general CC data and specific domains…
Source: Read MoreÂ