Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Top 10 Use Cases of Vibe Coding in Large-Scale Node.js Applications

      September 3, 2025

      Cloudsmith launches ML Model Registry to provide a single source of truth for AI models and datasets

      September 3, 2025

      Kong Acquires OpenMeter to Unlock AI and API Monetization for the Agentic Era

      September 3, 2025

      Microsoft Graph CLI to be retired

      September 2, 2025

      ‘Cronos: The New Dawn’ was by far my favorite experience at Gamescom 2025 — Bloober might have cooked an Xbox / PC horror masterpiece

      September 4, 2025

      ASUS built a desktop gaming PC around a mobile CPU — it’s an interesting, if flawed, idea

      September 4, 2025

      Hollow Knight: Silksong arrives on Xbox Game Pass this week — and Xbox’s September 1–7 lineup also packs in the horror. Here’s every new game.

      September 4, 2025

      The Xbox remaster that brought Gears to PlayStation just passed a huge milestone — “ending the console war” and proving the series still has serious pulling power

      September 4, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Magento (Adobe Commerce) or Optimizely Configured Commerce: Which One to Choose

      September 4, 2025
      Recent

      Magento (Adobe Commerce) or Optimizely Configured Commerce: Which One to Choose

      September 4, 2025

      Updates from N|Solid Runtime: The Best Open-Source Node.js RT Just Got Better

      September 3, 2025

      Scale Your Business with AI-Powered Solutions Built for Singapore’s Digital Economy

      September 3, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      ‘Cronos: The New Dawn’ was by far my favorite experience at Gamescom 2025 — Bloober might have cooked an Xbox / PC horror masterpiece

      September 4, 2025
      Recent

      ‘Cronos: The New Dawn’ was by far my favorite experience at Gamescom 2025 — Bloober might have cooked an Xbox / PC horror masterpiece

      September 4, 2025

      ASUS built a desktop gaming PC around a mobile CPU — it’s an interesting, if flawed, idea

      September 4, 2025

      Hollow Knight: Silksong arrives on Xbox Game Pass this week — and Xbox’s September 1–7 lineup also packs in the horror. Here’s every new game.

      September 4, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Scalable and Principled Reward Modeling for LLMs: Enhancing Generalist Reward Models RMs with SPCT and Inference-Time Optimization

    Scalable and Principled Reward Modeling for LLMs: Enhancing Generalist Reward Models RMs with SPCT and Inference-Time Optimization

    April 7, 2025

    Reinforcement Learning RL has become a widely used post-training method for LLMs, enhancing capabilities like human alignment, long-term reasoning, and adaptability. A major challenge, however, is generating accurate reward signals in broad, less structured domains, as current high-quality reward models are largely built on rule-based systems or verifiable tasks such as math and coding. In general applications, reward criteria are more diverse and subjective, lacking clear ground truths. To address this, generalist reward models (RMs) are being explored for broader applicability. However, these models must balance input flexibility and scalability during inference, particularly in producing reliable, high-quality rewards across varied tasks and domains.

    Existing reward modeling approaches include scalar, semi-scalar, and generative techniques, each with flexibility and inference-time performance trade-offs. For instance, pairwise models are limited to relative comparisons, while scalar models struggle with producing diverse feedback. Generative reward models (GRMs) offer richer, more flexible outputs, making them more suited for evaluating various responses. Recent work has explored training GRMs through offline RL, integrating tools and external knowledge to improve reward quality. However, few methods directly address how RMs can scale efficiently during inference. This has led to research on methods like sampling-based scaling, chain-of-thought prompting, and reward-guided aggregation, aiming to co-scale policy models and reward models during inference. These developments hold promise for more robust, general-purpose reward systems in LLMs.

    DeepSeek-AI and Tsinghua University researchers explore enhancing reward models RM for general queries by improving inference-time scalability using increased computing and better learning techniques. They employ pointwise GRM for flexible input handling and propose a learning method—Self-Principled Critique Tuning (SPCT)—which helps GRMs generate adaptive principles and accurate critiques during online reinforcement learning. They apply parallel sampling and introduce a meta RM to scale effectively and refine the voting process. Their DeepSeek-GRM models outperform existing benchmark methods, offering higher reward quality and scalability, with plans for open-sourcing despite challenges in some complex tasks.

    The researchers introduce SPCT, a method designed to enhance pointwise GRMs by enabling them to generate adaptive principles and accurate critiques. SPCT consists of two stages: rejective fine-tuning for initializing principle and critique generation and rule-based RL for refinement. Instead of treating principles as preprocessing, they are generated dynamically during inference. This promotes scalability by improving reward granularity. Additionally, inference-time performance is boosted through parallel sampling and voting, supported by a meta reward model (meta RM) that filters out low-quality outputs. Overall, SPCT improves reward accuracy, robustness, and scalability in GRMs.

    Using standard metrics, the study evaluates various RM methods across benchmarks like Reward Bench, PPE, RMB, and ReaLMistake. DeepSeek-GRM-27B consistently outperforms baselines and rivals strong public models like GPT-4o. Inference-time scaling, especially with voting and meta reward models, significantly boosts performance—achieving results comparable to much larger models. Ablation studies highlight the importance of components like principle generation and non-hinted sampling. Training-time scaling shows diminishing returns compared to inference-time strategies. Overall, DeepSeek-GRM, enhanced with SPCT and meta RM, offers robust, scalable reward modeling with reduced domain bias and strong generalization.

    In conclusion, the study presents SPCT, a method that improves inference-time scalability for GRMs through rule-based online reinforcement learning. SPCT enables adaptive principle and critique generation, enhancing reward quality across diverse tasks. DeepSeek-GRM models outperform several baselines and strong public models, especially when paired with a meta reward model for inference-time scaling. Using parallel sampling and flexible input handling, these GRMs achieve strong performance without relying on larger model sizes. Future work includes integrating GRMs into RL pipelines, co-scaling with policy models, and serving as reliable offline evaluators.


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 85k+ ML SubReddit.

    🔥 [Register Now] miniCON Virtual Conference on OPEN SOURCE AI: FREE REGISTRATION + Certificate of Attendance + 3 Hour Short Event (April 12, 9 am- 12 pm PST) + Hands on Workshop [Sponsored]

    The post Scalable and Principled Reward Modeling for LLMs: Enhancing Generalist Reward Models RMs with SPCT and Inference-Time Optimization appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleMMSearch-R1: End-to-End Reinforcement Learning for Active Image Search in LMMs
    Next Article Blockchain & Neuroscience: Unlocking the Future of Brain-Tech Innovation

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    September 3, 2025
    Machine Learning

    Announcing the new cluster creation experience for Amazon SageMaker HyperPod

    September 3, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Fake DocuSign, Gitcode Sites Spread NetSupport RAT via Multi-Stage PowerShell Attack

    Development

    How to Set Up Coolify in AWS EC2 and Have the Power to Do Anything in the Cloud

    Development

    Real-Time Communication in Next.js Using Socket.IO: A Beginner’s Guide

    Development

    CVE-2025-3842 – Panhainan DS-Java Code Injection Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    Highlights

    Development

    Erin Zapata Champions Dynamic Collaboration in Perficient’s Microsoft Business Unit

    July 7, 2025

    Meet Erin Zapata, a Practice Director based in Chicago, Illinois, whose empowering leadership and commitment…

    NVIDIA NeMo Framework Vulnerability Let Attackers Execute Remote Code

    April 24, 2025

    CVE-2025-1706 – Adobe Flash Use-After-Free Vulnerability

    May 17, 2025

    Meta might be secretly scanning your phone’s camera roll – how to check and turn it off

    August 23, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.