Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      June 4, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      June 4, 2025

      How To Prevent WordPress SQL Injection Attacks

      June 4, 2025

      Smashing Animations Part 4: Optimising SVGs

      June 4, 2025

      I test AI tools for a living. Here are 3 image generators I actually use and how

      June 4, 2025

      The world’s smallest 65W USB-C charger is my latest travel essential

      June 4, 2025

      This Spotlight alternative for Mac is my secret weapon for AI-powered search

      June 4, 2025

      Tech prophet Mary Meeker just dropped a massive report on AI trends – here’s your TL;DR

      June 4, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Beyond AEM: How Adobe Sensei Powers the Full Enterprise Experience

      June 4, 2025
      Recent

      Beyond AEM: How Adobe Sensei Powers the Full Enterprise Experience

      June 4, 2025

      Simplify Negative Relation Queries with Laravel’s whereDoesntHaveRelation Methods

      June 4, 2025

      Cast Model Properties to a Uri Instance in 12.17

      June 4, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      My Favorite Obsidian Plugins and Their Hidden Settings

      June 4, 2025
      Recent

      My Favorite Obsidian Plugins and Their Hidden Settings

      June 4, 2025

      Rilasciata /e/OS 3.0: Nuova Vita per Android Senza Google, Più Privacy e Controllo per l’Utente

      June 4, 2025

      Rilasciata Oracle Linux 9.6: Scopri le Novità e i Miglioramenti nella Sicurezza e nelle Prestazioni

      June 4, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Snowflake Proposes ExCoT: A Novel AI Framework that Iteratively Optimizes Open-Source LLMs by Combining CoT Reasoning with off-Policy and on-Policy DPO, Relying Solely on Execution Accuracy as Feedback

    Snowflake Proposes ExCoT: A Novel AI Framework that Iteratively Optimizes Open-Source LLMs by Combining CoT Reasoning with off-Policy and on-Policy DPO, Relying Solely on Execution Accuracy as Feedback

    April 3, 2025

    Text-to-SQL translation, the task of transforming natural language queries into structured SQL statements, is essential for facilitating user-friendly database interactions. However, the task involves significant complexities, notably schema linking, handling compositional SQL syntax, and resolving ambiguities in user queries. While Large Language Models (LLMs) have shown robust capabilities across various domains, the efficacy of structured reasoning techniques such as Chain-of-Thought (CoT) within text-to-SQL contexts remains limited. Prior attempts employing zero-shot CoT or Direct Preference Optimization (DPO) without structured reasoning yielded marginal improvements, indicating the necessity for more rigorous methodologies.

    Snowflake introduces ExCoT, a structured framework designed to optimize open-source LLMs through the combination of CoT reasoning and iterative preference optimization, specifically utilizing off-policy and on-policy DPO guided exclusively by execution accuracy feedback. ExCoT dispenses with external reward models and human annotations, relying instead on internally generated reasoning steps and execution results. The method operates in two principal phases: initially, it generates candidate CoT data validated through off-policy DPO, forming the basis for supervised fine-tuning. Subsequently, the model iteratively generates and refines CoT data via on-policy DPO, incrementally improving accuracy through feedback derived from execution correctness.

    ExCoT employs detailed CoT reasoning, particularly adopting a divide-and-conquer strategy wherein complex queries are decomposed into simpler sub-queries. Each sub-query is analyzed and independently resolved before being integrated into a coherent final query. This structured decomposition enables the model to manage the complexity and nested structures common in SQL operations more effectively. Execution-based verification serves as the core mechanism for correctness evaluation, where generated queries are validated by comparing their execution outputs against ground-truth results. Incorrect and correct queries are systematically paired, providing explicit signals for preference-based learning. The iterative refinement in the on-policy DPO phase progressively enhances the model’s reasoning accuracy.

    Experimental evaluation of ExCoT demonstrated significant improvements in execution accuracy. Specifically, with the LLaMA-3.1 70B model, ExCoT elevated execution accuracy on the BIRD development set from 57.37% to 68.51%, and increased Spider test set performance from 78.81% to 86.59%. Comparable performance enhancements were recorded with the Qwen-2.5-Coder 32B model. These results position ExCoT as a leading approach in single-model evaluations for these benchmarks, surpassing established methods such as XiYanSQL and proprietary models including OpenAI variants. Notably, the improvements consistently maintained high query validity rates (exceeding 98%), confirming enhancements in semantic correctness alongside syntactic precision.

    In conclusion, ExCoT represents a methodical advancement in structured reasoning optimization for open-source LLMs applied to text-to-SQL tasks. By integrating structured CoT reasoning with preference optimization, guided solely by execution-based feedback, ExCoT effectively addresses limitations identified in previous methods. Its iterative refinement capability ensures continuous improvement without dependence on external reward structures or manual annotations. Further research might explore extending this framework to more intricate schema environments and additional structured reasoning tasks, thus broadening the applicability and reliability of LLMs in structured query generation contexts.


    Check out the Paper, GitHub Page and Details. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 85k+ ML SubReddit.

    🔥 [Register Now] miniCON Virtual Conference on OPEN SOURCE AI: FREE REGISTRATION + Certificate of Attendance + 3 Hour Short Event (April 12, 9 am- 12 pm PST) + Hands on Workshop [Sponsored]

    The post Snowflake Proposes ExCoT: A Novel AI Framework that Iteratively Optimizes Open-Source LLMs by Combining CoT Reasoning with off-Policy and on-Policy DPO, Relying Solely on Execution Accuracy as Feedback appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleHow to Work Better with Git in Teams
    Next Article Advancing Vision-Language Reward Models: Challenges, Benchmarks, and the Role of Process-Supervised Learning

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    June 4, 2025
    Machine Learning

    A Coding Implementation to Build an Advanced Web Intelligence Agent with Tavily and Gemini AI

    June 4, 2025
    Leave A Reply Cancel Reply

    Hostinger

    Continue Reading

    Question-Answer Cross Attention Networks (QAN): Advancing Answer Selection in Community Question Answering

    Development

    The Rise of PWAs & On-Demand Services Powered by React Native📱

    Web Development

    Universal Design in Pharmacies – Economic and Social Benefits

    Development

    Top AI tools to leverage for business growth

    Web Development
    GetResponse

    Highlights

    Development

    LiteLLM: Call 100+ LLMs Using the Same Input/Output Format

    August 11, 2024

    Managing and optimizing API calls to various Large Language Model (LLM) providers can be complex,…

    Amazon just confirmed its July Prime Day sale will be back, despite looming tariffs

    April 29, 2025

    CVE-2025-46249 – Elementor Simple Calendar CSRF

    April 22, 2025

    What is the best practice of dependsOnMethods in TestNg?

    November 14, 2024
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.