Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      June 4, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      June 4, 2025

      How To Prevent WordPress SQL Injection Attacks

      June 4, 2025

      Smashing Animations Part 4: Optimising SVGs

      June 4, 2025

      I test AI tools for a living. Here are 3 image generators I actually use and how

      June 4, 2025

      The world’s smallest 65W USB-C charger is my latest travel essential

      June 4, 2025

      This Spotlight alternative for Mac is my secret weapon for AI-powered search

      June 4, 2025

      Tech prophet Mary Meeker just dropped a massive report on AI trends – here’s your TL;DR

      June 4, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Beyond AEM: How Adobe Sensei Powers the Full Enterprise Experience

      June 4, 2025
      Recent

      Beyond AEM: How Adobe Sensei Powers the Full Enterprise Experience

      June 4, 2025

      Simplify Negative Relation Queries with Laravel’s whereDoesntHaveRelation Methods

      June 4, 2025

      Cast Model Properties to a Uri Instance in 12.17

      June 4, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      My Favorite Obsidian Plugins and Their Hidden Settings

      June 4, 2025
      Recent

      My Favorite Obsidian Plugins and Their Hidden Settings

      June 4, 2025

      Rilasciata /e/OS 3.0: Nuova Vita per Android Senza Google, Più Privacy e Controllo per l’Utente

      June 4, 2025

      Rilasciata Oracle Linux 9.6: Scopri le Novità e i Miglioramenti nella Sicurezza e nelle Prestazioni

      June 4, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»OpenAI introduces SWE-Lancer: A Benchmark for Evaluating Model Performance on Real-World Freelance Software Engineering Work

    OpenAI introduces SWE-Lancer: A Benchmark for Evaluating Model Performance on Real-World Freelance Software Engineering Work

    February 18, 2025

    Addressing the evolving challenges in software engineering starts with recognizing that traditional benchmarks often fall short. Real-world freelance software engineering is complex, involving much more than isolated coding tasks. Freelance engineers work on entire codebases, integrate diverse systems, and manage intricate client requirements. Conventional evaluation methods, which typically emphasize unit tests, miss critical aspects such as full-stack performance and the real monetary impact of solutions. This gap between synthetic testing and practical application has driven the need for more realistic evaluation methods.

    OpenAI introduces SWE-Lancer, a benchmark for evaluating model performance on real-world freelance software engineering work. The benchmark is based on over 1,400 freelance tasks sourced from Upwork and the Expensify repository, with a total payout of $1 million USD. Tasks range from minor bug fixes to major feature implementations. SWE-Lancer is designed to evaluate both individual code patches and managerial decisions, where models are required to select the best proposal from multiple options. This approach better reflects the dual roles found in real engineering teams.

    One of SWE-Lancer’s key strengths is its use of end-to-end tests rather than isolated unit tests. These tests are carefully crafted and verified by professional software engineers. They simulate the entire user workflow—from issue identification and debugging to patch verification. By using a unified Docker image for evaluation, the benchmark ensures that every model is tested under the same controlled conditions. This rigorous testing framework helps reveal whether a model’s solution would be robust enough for practical deployment.

    The technical details of SWE-Lancer are thoughtfully designed to mirror the realities of freelance work. Tasks require modifications across multiple files and integrations with APIs, and they span both mobile and web platforms. In addition to producing code patches, models are challenged to review and select among competing proposals. This dual focus on technical and managerial skills reflects the true responsibilities of software engineers. The inclusion of a user tool that simulates real user interactions further enhances the evaluation by encouraging iterative debugging and adjustment.

    Results from SWE-Lancer offer valuable insights into the current capabilities of language models in software engineering. In individual contributor tasks, models such as GPT-4o and Claude 3.5 Sonnet achieved pass rates of 8.0% and 26.2%, respectively. In managerial tasks, the best model reached a pass rate of 44.9%. These numbers suggest that while state-of-the-art models can offer promising solutions, there is still considerable room for improvement. Additional experiments indicate that allowing more attempts or increasing test-time compute can meaningfully enhance performance, particularly on more challenging tasks.

    Hostinger

    In conclusion, SWE-Lancer presents a thoughtful and realistic approach to evaluating AI in software engineering. By directly linking model performance to real monetary value and emphasizing full-stack challenges, the benchmark provides a more accurate picture of a model’s practical capabilities. This work encourages a move away from synthetic evaluation metrics toward assessments that reflect the economic and technical realities of freelance work. As the field continues to evolve, SWE-Lancer serves as a valuable tool for researchers and practitioners alike, offering clear insights into both current limitations and potential avenues for improvement. Ultimately, this benchmark helps pave the way for safer and more effective integration of AI into the software engineering process.


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 75k+ ML SubReddit.

    🚨 Recommended Read- LG AI Research Releases NEXUS: An Advanced System Integrating Agent AI System and Data Compliance Standards to Address Legal Concerns in AI Datasets

    The post OpenAI introduces SWE-Lancer: A Benchmark for Evaluating Model Performance on Real-World Freelance Software Engineering Work appeared first on MarkTechPost.

    Source: Read More 

    Hostinger
    Facebook Twitter Reddit Email Copy Link
    Previous ArticleHow Does AI-Powered Risk Assessment Optimize Insurance Management
    Next Article This AI Paper Introduces Diverse Inference and Verification: Enhancing AI Reasoning for Advanced Mathematical and Logical Problem-Solving

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    June 4, 2025
    Machine Learning

    A Coding Implementation to Build an Advanced Web Intelligence Agent with Tavily and Gemini AI

    June 4, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    The best-looking Linux desktop I’ve seen so far in 2025 – and it’s not even close

    News & Updates

    How to Fix ERROR_DBG_UNABLE_TO_PROVIDE_HANDLE

    Operating Systems

    Vue.js avatar component vue-avatar

    Development

    5 reasons why Linux will overtake Windows and MacOS on the desktop – eventually

    Development
    GetResponse

    Highlights

    Brisa 0.2.12 – Near 0.3 🔜

    May 3, 2025

    Comments Source: Read More 

    Meet This New AI Research Startup That is Proposing a New Technique Based on Symbolic Models for Building AI

    April 18, 2024

    Customize small language models on AWS with automotive terminology

    November 19, 2024

    A Coding Implementation to Build an AI Agent with Live Python Execution and Automated Validation

    May 25, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.