Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      June 4, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      June 4, 2025

      How To Prevent WordPress SQL Injection Attacks

      June 4, 2025

      Smashing Animations Part 4: Optimising SVGs

      June 4, 2025

      I test AI tools for a living. Here are 3 image generators I actually use and how

      June 4, 2025

      The world’s smallest 65W USB-C charger is my latest travel essential

      June 4, 2025

      This Spotlight alternative for Mac is my secret weapon for AI-powered search

      June 4, 2025

      Tech prophet Mary Meeker just dropped a massive report on AI trends – here’s your TL;DR

      June 4, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Beyond AEM: How Adobe Sensei Powers the Full Enterprise Experience

      June 4, 2025
      Recent

      Beyond AEM: How Adobe Sensei Powers the Full Enterprise Experience

      June 4, 2025

      Simplify Negative Relation Queries with Laravel’s whereDoesntHaveRelation Methods

      June 4, 2025

      Cast Model Properties to a Uri Instance in 12.17

      June 4, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      My Favorite Obsidian Plugins and Their Hidden Settings

      June 4, 2025
      Recent

      My Favorite Obsidian Plugins and Their Hidden Settings

      June 4, 2025

      Rilasciata /e/OS 3.0: Nuova Vita per Android Senza Google, Più Privacy e Controllo per l’Utente

      June 4, 2025

      Rilasciata Oracle Linux 9.6: Scopri le Novità e i Miglioramenti nella Sicurezza e nelle Prestazioni

      June 4, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Align-Pro: A Cost-Effective Alternative to RLHF for LLM Alignment

    Align-Pro: A Cost-Effective Alternative to RLHF for LLM Alignment

    January 23, 2025

    Aligning large language models (LLMs) with human values is essential as these models become central to various societal functions. A significant challenge arises when model parameters cannot be updated directly because the models are fixed or inaccessible. In these cases, the focus is on adjusting the input prompts to make the model’s outputs match the desired results. However, this technique lacks a solid theoretical foundation, and its effectiveness and ability to achieve the best results are uncertain compared to methods that adjust the model’s parameters. The key issue is whether prompt optimization can fully address alignment challenges without requiring direct adjustments to the model itself.

    Current methods for aligning large language models (LLMs), such as reinforcement learning from human feedback (RLHF), rely heavily on fine-tuning model parameters. These include supervised fine-tuning, reward learning, and reinforcement learning-based optimization. Despite being efficient, they are resource-intensive and thus unsuitable for frozen or inaccessible models. The new alternatives, namely direct preference optimization and intuitive fine-tuning, rely on parameter updates, limiting their applicability scope. Recently, prompt optimization was discovered as an alternative that interacts with the input prompts to adjust the model responses. This technique does not have much theoretical clarity and has been subject to doubts over its ability to match the efficacy of parameter-based methods for alignment challenges.

    To improve the alignment of large language models (LLMs), researchers from the University of Central Florida, the University of Maryland, and Purdue University proposed Align-Pro, a prompt optimization framework designed to align LLMs without modifying their parameters. This framework includes key steps such as supervised fine-tuning (SFT), reward learning, and reinforcement learning (RL). The RLHF process starts with SFT, which fine-tunes pre-trained models on human-generated datasets. Then, a reward model is trained using expert feedback to evaluate model responses, often using a pairwise comparison loss function. The fine-tuning with RL maximizes alignment by solving a KL-regularized optimization problem. Through such iterative fine-tuning of the model, model parameters get adjusted to be aligned better with human preferences. It fine-tuned a prompter model to influence the responses that the model generates. The framework explored how tuning parameters, such as the regularization coefficient (λ), controlled the optimization’s extent, ensuring efficient and computationally feasible alignment.

    Researchers conducted experiments on the framework using two prompter models, P1 (Phi-3.5-Instruct) and P2 (Qwen-2.5-1.5B-Instruct), along with two frozen models, F1 and F2 (both Llama-3.1-8B-Instruct). The evaluation involved three configurations: no fine-tuning, Align-Pro with a fine-tuned prompter, and RLHF with a fine-tuned model. Performance was tested on three datasets: UltraFeedback, HelpSteer, and Orca, using metrics like mean reward, variance, and win rate comparison. Results showed Align-Pro consistently outperformed the no fine-tuning baseline across all datasets and architectures, with improved mean rewards, lower reward variance, and win rates as high as 67% (e.g., Qwen-2.5-1.5B-Instruct with Llama-3.1-8B-Instruct on HelpSteer) compared to the baseline. The results pointed out that the optimization efficiency in the framework works through prompts without changing the frozen models; standardized hyperparameters further support efficient computational sources.

    In conclusion, the proposed framework efficiently optimized prompts using a smaller, trainable model to generate prompts for frozen large language models. This reduced computational costs while retaining the LLM’s pre-trained capabilities. The framework outperformed baselines regarding mean rewards and win rates across various datasets and configurations without requiring fine-tuning of the LLM. This efficiency not only reassures the practicality of the framework but also its potential to impact future research in AI and machine learning significantly. The framework can be a baseline for future research, and possible advancements could include analyzing the impact of noise on prompt robustness, sequential prompter designs, and developing theoretical bounds that improve alignment performance in LLMs.


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 70k+ ML SubReddit.

    🚨 [Recommended Read] Nebius AI Studio expands with vision models, new language models, embeddings and LoRA (Promoted)

    The post Align-Pro: A Cost-Effective Alternative to RLHF for LLM Alignment appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleBridging Reasoning and Action: The Synergy of Large Concept Models (LCMs) and Large Action Models (LAMs) in Agentic Systems
    Next Article Plurai Introduces IntellAgent: An Open-Source Multi-Agent Framework to Evaluate Complex Conversational AI System

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    June 4, 2025
    Machine Learning

    A Coding Implementation to Build an Advanced Web Intelligence Agent with Tavily and Gemini AI

    June 4, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    Sopht raises €3.3M for energy reduction SaaS

    Development

    VirtualBox 7.1.8 Adds Support for Linux Kernel 6.14

    Linux

    CVE-2025-4591 – Weluka Lite Stored Cross-Site Scripting Vulnerability in WordPress

    Common Vulnerabilities and Exposures (CVEs)

    Universal Design for Cognitive Disabilities in Healthcare -Clear and Simple Communication – 1

    Development

    Highlights

    Google NotebookLM Launches Audio Overviews in 50+ Languages, Expanding Global Accessibility for AI Summarization

    April 30, 2025

    Google has significantly expanded the capabilities of its experimental AI tool, NotebookLM, by introducing Audio…

    I’ve used every Samsung Galaxy S25 model – and the one I love most isn’t the Ultra

    January 28, 2025

    Breaking Down the New China-Linked Remote Access Trojan ValleyRAT Variant

    June 11, 2024

    Researchers Discovered 24 Vulnerabilities in ZKTeco Biometric Terminals Used In Nuclear Plants

    June 12, 2024
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.