Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      June 3, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      June 3, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      June 3, 2025

      How To Prevent WordPress SQL Injection Attacks

      June 3, 2025

      SteelSeries reveals new Arctis Nova 3 Wireless headset series for Xbox, PlayStation, Nintendo Switch, and PC

      June 3, 2025

      The Witcher 4 looks absolutely amazing in UE5 technical presentation at State of Unreal 2025

      June 3, 2025

      Razer’s having another go at making it so you never have to charge your wireless gaming mouse, and this time it might have nailed it

      June 3, 2025

      Alienware’s rumored laptop could be the first to feature NVIDIA’s revolutionary Arm-based APU

      June 3, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      easy-live2d – About Make your Live2D as easy to control as a pixi sprite! Live2D Web SDK based on Pixi.js.

      June 3, 2025
      Recent

      easy-live2d – About Make your Live2D as easy to control as a pixi sprite! Live2D Web SDK based on Pixi.js.

      June 3, 2025

      From Kitchen To Conversion

      June 3, 2025

      Perficient Included in Forrester’s AI Technical Services Landscape, Q2 2025

      June 3, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      SteelSeries reveals new Arctis Nova 3 Wireless headset series for Xbox, PlayStation, Nintendo Switch, and PC

      June 3, 2025
      Recent

      SteelSeries reveals new Arctis Nova 3 Wireless headset series for Xbox, PlayStation, Nintendo Switch, and PC

      June 3, 2025

      The Witcher 4 looks absolutely amazing in UE5 technical presentation at State of Unreal 2025

      June 3, 2025

      Razer’s having another go at making it so you never have to charge your wireless gaming mouse, and this time it might have nailed it

      June 3, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»PyG-SSL: An Open-Source Library for Graph Self-Supervised Learning and Compatible with Various Deep Learning and Scientific Computing Backends

    PyG-SSL: An Open-Source Library for Graph Self-Supervised Learning and Compatible with Various Deep Learning and Scientific Computing Backends

    January 8, 2025

    Complex domains like social media, molecular biology, and recommendation systems have graph-structured data that consists of nodes, edges, and their respective features. These nodes and edges do not have a structured relationship, so addressing them using graph neural networks (GNNs) is essential. However, GNNs rely on labeled data, which is difficult and expensive to obtain. Self-supervised Learning (SSL) is an evolving methodology that leverages unlabelled data by generating its supervisory signals. SSL for graphs comes with its own challenges, such as domain specificity, lack of modularity, and steep learning curve. Addressing these issues, a team of researchers from the University of Illinois Urbana-Champaign, Wayne State University, and Meta AI have developed PyG-SSL, an open-source toolkit designed to advance graph self-supervised learning.

    Current Graph Self-Supervised Learning (GSSL) approaches primarily focus on pretext (self-generated) tasks, graph augmentation, and contrastive learning. Pretext includes node-level, edge-level, and graph-level tasks that help the model learn useful representations without needing labeled data. Their augmentation occurs by dropping, maskin,g or shuffling, improving the model’s robustness and generalizability. However, existing GSSL frameworks are designed for specific applications and require significant customization. Moreover, developing and testing new SSL methods is time-intensive and error-prone without a modular and extensible framework. Therefore, a new process is needed to address the fragmented nature of existing GSSL implementations and the absence of a unified toolkit that restricts standardization and benchmarking across various GSSL methods. 

    The proposed toolkit, PyG-SSL, standardizes the implementation and evaluation of graph SSL methods. The key features of PyG-SSL are:

    • Comprehensive Support: This toolkit integrates multiple state-of-the-art methods for a unified framework, allowing researchers to select the most suitable method for their specific application. 
    • Modularity: PyG-SSL allows the creation of tailored solutions by mixing one or more techniques. Pipelines can also be customized without requiring extensive reconfiguration.
    • Benchmarks and Datasets: Standard datasets and evaluation protocols are preloaded in this toolkit to allow researchers to benchmark their findings and ensure validation easily. 
    • Performance Optimization: PyG-SSL toolkit is designed to handle large datasets efficiently. It is optimized for fast training time and reduced computational requirements.

    This toolkit has been rigorously tested across multiple datasets and SSL methods, demonstrating its effectiveness in standardizing and advancing graph SSL research. With reference implementations of a wide range of SSL methods, PyG-SSL ensures that the results are reproducible and comparable in experiments. Experimental results demonstrate that integrating PyG-SSL into existing GNN architectures improves their performance on downstream tasks by properly exploiting unlabeled data.

    PyG-SSL marks a significant milestone in graph self-supervised learning, addressing long-standing challenges related to standardization, reproducibility, and accessibility. PyG-SSL gives the possibility to attain state-of-the-art results through its unified, modular, and extensible toolkit, easing the development of innovative graph SSL methods. PyG-SSL can play a pivotal role in advancing graph-based machine learning applications across diverse domains in this fast-evolving field.


    Check out the Paper and GitHub Page. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 60k+ ML SubReddit.

    🚨 FREE UPCOMING AI WEBINAR (JAN 15, 2025): Boost LLM Accuracy with Synthetic Data and Evaluation Intelligence–Join this webinar to gain actionable insights into boosting LLM model performance and accuracy while safeguarding data privacy.

    The post PyG-SSL: An Open-Source Library for Graph Self-Supervised Learning and Compatible with Various Deep Learning and Scientific Computing Backends appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleResearchers from Princeton University Introduce Metadata Conditioning then Cooldown (MeCo) to Simplify and Optimize Language Model Pre-training
    Next Article DeepMind Research Introduces The FACTS Grounding Leaderboard: Benchmarking LLMs’ Ability to Ground Responses to Long-Form Input

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    June 3, 2025
    Machine Learning

    Distillation Scaling Laws

    June 3, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    CVE-2025-2561 – Ninja Forms Stored Cross-Site Scripting Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    Have We Reached a Distroless Tipping Point?

    Development

    espansoGUI is a GUI for espanso

    Linux

    An interview with Cogniteam CEO Dr. Yehuda Elmaliah

    Artificial Intelligence

    Highlights

    Development

    Applied Ventures backs Microoled in advancing OLED microdisplays

    November 21, 2024

    Microoled, a French manufacturer of high-resolution, low-power OLED microdisplays, has received investment from Applied Ventures,…

    Is Automated Hallucination Detection in LLMs Feasible? A Theoretical and Empirical Investigation

    May 7, 2025

    risiOS – Fedora based Linux distribution

    January 14, 2025

    The Fundamentals of Cloud Security Stress Testing

    May 8, 2024
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.