Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      June 3, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      June 3, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      June 3, 2025

      How To Prevent WordPress SQL Injection Attacks

      June 3, 2025

      SteelSeries reveals new Arctis Nova 3 Wireless headset series for Xbox, PlayStation, Nintendo Switch, and PC

      June 3, 2025

      The Witcher 4 looks absolutely amazing in UE5 technical presentation at State of Unreal 2025

      June 3, 2025

      Razer’s having another go at making it so you never have to charge your wireless gaming mouse, and this time it might have nailed it

      June 3, 2025

      Alienware’s rumored laptop could be the first to feature NVIDIA’s revolutionary Arm-based APU

      June 3, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      easy-live2d – About Make your Live2D as easy to control as a pixi sprite! Live2D Web SDK based on Pixi.js.

      June 3, 2025
      Recent

      easy-live2d – About Make your Live2D as easy to control as a pixi sprite! Live2D Web SDK based on Pixi.js.

      June 3, 2025

      From Kitchen To Conversion

      June 3, 2025

      Perficient Included in Forrester’s AI Technical Services Landscape, Q2 2025

      June 3, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      SteelSeries reveals new Arctis Nova 3 Wireless headset series for Xbox, PlayStation, Nintendo Switch, and PC

      June 3, 2025
      Recent

      SteelSeries reveals new Arctis Nova 3 Wireless headset series for Xbox, PlayStation, Nintendo Switch, and PC

      June 3, 2025

      The Witcher 4 looks absolutely amazing in UE5 technical presentation at State of Unreal 2025

      June 3, 2025

      Razer’s having another go at making it so you never have to charge your wireless gaming mouse, and this time it might have nailed it

      June 3, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»This AI paper from the Beijing Institute of Technology and Harvard Unveils TXpredict for Predicting Microbial Transcriptomes

    This AI paper from the Beijing Institute of Technology and Harvard Unveils TXpredict for Predicting Microbial Transcriptomes

    January 7, 2025

    Predicting transcriptomes directly from genome sequences is a significant challenge in microbial genomics, particularly for the numerous sequenced microbes that remain unculturable or require complex experimental protocols like RNA-seq. The gap between genomic information and functional understanding leaves us without knowledge of the microbial adaptive processes, survival mechanisms, and gene regulation functions. This must be addressed to make better studies of microbial ecosystems, analysis of non-model organisms, and synthetic biology applications better.

    Present techniques of transcriptome profiling are mainly experimental approaches such as RNA sequencing, which is time-consuming, expensive, and usually unsuitable for microorganisms with special growth requirements or those that survive under extreme environments. Computational models on UTRs or long DNA sequences are only partially useful since they can not be easily generalized to all taxonomic groups. Moreover, these methods fail to consider evolutionary constraints relevant to protein synthesis, making them even less useful in predicting transcriptomes of non-model and novel microbial species.

    Researchers from the Beijing Institute of Technology and Harvard University propose TXpredict, a transformative framework for transcriptome prediction that utilizes annotated genome sequences. Leveraging a pre-trained protein language model (ESM2) extracts predictive features from protein embeddings while incorporating evolutionary principles. This innovation surmounts limitations on scalability, generalizability, and computational efficiency yet introduces new capabilities such as condition-specific gene expression predictions. Due to its capability to analyze the diversity of microbial taxa, including unculturable species, TXpredict is a significant advancement in microbial genomics.

    TXpredict is based on transcriptome data for 22 bacterial and 10 archaeal species, featuring 11.5 million gene expression measurements. The model uses a transformer encoder architecture with multi-head self-attention to capture complex sequence relationships. Inputs include protein embeddings from ESM2 and basic sequence statistics. Model training utilized leave-one-genome-out cross-validation for robust generalization. Condition-specific predictions were also enabled by incorporating 5′ UTR sequences. The framework is computationally efficient, completing transcriptome prediction for a microbial genome within 22 minutes on standard hardware.

    TXpredict proved to be very accurate and scalable in the context of transcriptome prediction. It achieved a mean Spearman correlation coefficient of 0.53 for bacterial organisms and 0.42 for archaea and showed significant results for specific species such as B. hinzii (0.64), B. thetaiotaomicron (0.62), and C. beijerinckii (0.62). The predictions were extended to 900 additional genomes representing 276 genera and 3.11 million genes, which covered a large number of previously uncharacterized taxa. In the context of condition-specific transcriptomes, the model showed an average correlation of 0.52 over 4.6k experimental conditions, thereby capturing dynamic regulatory patterns. These results indicate that the framework is capable of giving precise predictions across a wide range of microbial species while keeping computational efficiency in check.

    TXpredict addresses critical challenges in microbial genomics by bridging the gap between genome sequences and transcriptome predictions. This method, with the integration of protein embeddings, evolutionary constraints, and features specific to different conditions, presents a scalable, precise, and effective solution for various microbial taxa. This strategy not only yields valuable insights into gene regulation and adaptation but also possesses the potential to enhance synthetic biology and ecological research. Notwithstanding certain limitations, including dependence on pre-existing RNA-seq datasets and the exclusion of non-coding RNA components, TXpredict establishes a foundational framework for innovative applications in the field of microbial research.


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 60k+ ML SubReddit.

    🚨 FREE UPCOMING AI WEBINAR (JAN 15, 2025): Boost LLM Accuracy with Synthetic Data and Evaluation Intelligence–Join this webinar to gain actionable insights into boosting LLM model performance and accuracy while safeguarding data privacy.

    The post This AI paper from the Beijing Institute of Technology and Harvard Unveils TXpredict for Predicting Microbial Transcriptomes appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleResearchers from USC and Prime Intellect Released METAGENE-1: A 7B Parameter Autoregressive Transformer Model Trained on Over 1.5T DNA and RNA Base Pairs
    Next Article Streamlining CRM Processes: Implementing Copilot’s Technical Solutions in Dynamics 365

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    June 3, 2025
    Machine Learning

    Distillation Scaling Laws

    June 3, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    Amazon’s Kindle download deadline is in two days — Here’s how I saved my ebooks

    News & Updates

    Subatomic Update: Figma and Code Token Architecture Available!

    Web Development

    CVE-2025-46569 – Open Policy Agent (OPA) HTTP Data API Code Injection Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    Microsoft Teams launches as a single app for work, personal, and education

    Development

    Highlights

    Development

    Here’s why Arm Holdings wants Qualcomm to destroy ALL Copilot+ PCs one week before they ship to customers

    June 12, 2024

    Arm argues Qualcomm has a contractual obligation to destroy chips derived from Nuvia technology, which…

    APT36 Spoofs India Post Website to Infect Windows and Android Users with Malware

    March 27, 2025

    Xbox Game Pass is having its most insane quarter ever — with more games than ever, and more variety than ever — but will gamers notice?

    April 24, 2025

    OpenAI Releases Codex CLI: An Open-Source Local Coding Agent that Turns Natural Language into Working Code

    April 16, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.