Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      June 4, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      June 4, 2025

      How To Prevent WordPress SQL Injection Attacks

      June 4, 2025

      Smashing Animations Part 4: Optimising SVGs

      June 4, 2025

      I test AI tools for a living. Here are 3 image generators I actually use and how

      June 4, 2025

      The world’s smallest 65W USB-C charger is my latest travel essential

      June 4, 2025

      This Spotlight alternative for Mac is my secret weapon for AI-powered search

      June 4, 2025

      Tech prophet Mary Meeker just dropped a massive report on AI trends – here’s your TL;DR

      June 4, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Beyond AEM: How Adobe Sensei Powers the Full Enterprise Experience

      June 4, 2025
      Recent

      Beyond AEM: How Adobe Sensei Powers the Full Enterprise Experience

      June 4, 2025

      Simplify Negative Relation Queries with Laravel’s whereDoesntHaveRelation Methods

      June 4, 2025

      Cast Model Properties to a Uri Instance in 12.17

      June 4, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      My Favorite Obsidian Plugins and Their Hidden Settings

      June 4, 2025
      Recent

      My Favorite Obsidian Plugins and Their Hidden Settings

      June 4, 2025

      Rilasciata /e/OS 3.0: Nuova Vita per Android Senza Google, Più Privacy e Controllo per l’Utente

      June 4, 2025

      Rilasciata Oracle Linux 9.6: Scopri le Novità e i Miglioramenti nella Sicurezza e nelle Prestazioni

      June 4, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Graph Generative Pre-trained Transformer (G2PT): An Auto-Regressive Model Designed to Learn Graph Structures through Next-Token Prediction

    Graph Generative Pre-trained Transformer (G2PT): An Auto-Regressive Model Designed to Learn Graph Structures through Next-Token Prediction

    January 5, 2025

    Graph generation is an important task across various fields, including molecular design and social network analysis, due to its ability to model complex relationships and structured data. Despite recent advancements, many graph generative models still rely heavily on adjacency matrix representations. While effective, these methods can be computationally demanding and often lack flexibility. This can make it difficult to efficiently capture the intricate dependencies between nodes and edges, especially for large and sparse graphs. Current approaches, including diffusion-based and auto-regressive models, face challenges in scalability and accuracy, highlighting the need for more refined solutions.

    Researchers from Tufts University, Northeastern University, and Cornell University have developed the Graph Generative Pre-trained Transformer (G2PT), an auto-regressive model designed to learn graph structures through next-token prediction. Unlike traditional methods, G2PT uses a sequence-based representation of graphs, encoding nodes and edges as sequences of tokens. This approach streamlines the modeling process, making it more efficient and scalable. By leveraging a transformer decoder for token prediction, G2PT generates graphs that maintain structural integrity and flexibility. Additionally, G2PT is adaptable to downstream tasks such as goal-oriented graph generation and graph property prediction, making it a versatile tool for various applications.

    Technical Insights and Benefits

    G2PT introduces a sequence-based representation that divides graphs into node and edge definitions. Node definitions detail indices and types, while edge definitions outline connections and labels. This approach departs from adjacency matrix representations by focusing solely on existing edges, reducing sparsity and computational complexity. The transformer decoder effectively models these sequences through next-token prediction, offering several advantages:

    1. Efficiency: By addressing only existing edges, G2PT minimizes computational overhead.
    2. Scalability: The architecture is well-suited for handling large, complex graphs.
    3. Adaptability: G2PT can be fine-tuned for a variety of tasks, enhancing its utility across domains such as molecular design and social network analysis.

    The researchers also explored fine-tuning methods for tasks like goal-oriented generation and graph property prediction, broadening the model’s applicability.

    Experimental Results and Insights

    G2PT has demonstrated strong performance across various datasets and tasks. In general graph generation, it matched or exceeded the performance of existing models across seven datasets. In molecular graph generation, G2PT showed high validity and uniqueness scores, reflecting its ability to accurately capture structural details. For example, on the MOSES dataset, G2PTbase achieved a validity score of 96.4% and a uniqueness score of 100%.

    In a goal-oriented generation, G2PT aligned generated graphs with desired properties using fine-tuning techniques like rejection sampling and reinforcement learning. These methods enabled the model to adapt its outputs effectively. Similarly, in predictive tasks, G2PT’s embeddings delivered competitive results across molecular property benchmarks, reinforcing its suitability for both generative and predictive tasks.

    Hostinger

    Conclusion

    The Graph Generative Pre-trained Transformer (G2PT) represents a thoughtful step forward in graph generation. By employing a sequence-based representation and transformer-based modeling, G2PT addresses many limitations of traditional approaches. Its combination of efficiency, scalability, and adaptability makes it a valuable resource for researchers and practitioners. While G2PT shows sensitivity to graph orderings, further exploration of universal and expressive edge-ordering mechanisms could enhance its robustness. G2PT exemplifies how innovative representations and modeling approaches can advance the field of graph generation.


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 60k+ ML SubReddit.

    🚨 FREE UPCOMING AI WEBINAR (JAN 15, 2025): Boost LLM Accuracy with Synthetic Data and Evaluation Intelligence–Join this webinar to gain actionable insights into boosting LLM model performance and accuracy while safeguarding data privacy.

    The post Graph Generative Pre-trained Transformer (G2PT): An Auto-Regressive Model Designed to Learn Graph Structures through Next-Token Prediction appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticlePlaywright tests running in self hosted GitHub Actions runner using Azure VM crashes during tests
    Next Article From Latent Spaces to State-of-the-Art: The Journey of LightningDiT

    Related Posts

    Security

    HPE StoreOnce Faces Critical CVE-2025-37093 Vulnerability — Urges Immediate Patch Upgrade

    June 4, 2025
    Security

    Google fixes Chrome zero-day with in-the-wild exploit (CVE-2025-5419)

    June 4, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    Automotive App Development Company: Choose the Right Tech Partner

    Web Development

    CVE-2025-37986 – “USB Type-C: Invalid Pointer Vulnerability”

    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-3969 – Codeprojects News Publishing Site Dashboard Remote File Upload Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    Perficient is a 2024 Top Workplace in Orange County

    Development

    Highlights

    Development

    Perform generative AI-powered data prep and no-code ML over any size of data using Amazon SageMaker Canvas

    August 16, 2024

    Amazon SageMaker Canvas now empowers enterprises to harness the full potential of their data by…

    WordFinder app: Harnessing generative AI on AWS for aphasia communication

    May 2, 2025

    New to the web platform in March

    May 2, 2025

    Typewriter – create documents with typst

    May 7, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.