Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      June 1, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      June 1, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      June 1, 2025

      How To Prevent WordPress SQL Injection Attacks

      June 1, 2025

      My top 5 must-play PC games for the second half of 2025 — Will they live up to the hype?

      June 1, 2025

      A week of hell with my Windows 11 PC really makes me appreciate the simplicity of Google’s Chromebook laptops

      June 1, 2025

      Elden Ring Nightreign Night Aspect: How to beat Heolstor the Nightlord, the final boss

      June 1, 2025

      New Xbox games launching this week, from June 2 through June 8 — Zenless Zone Zero finally comes to Xbox

      June 1, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Student Record Android App using SQLite

      June 1, 2025
      Recent

      Student Record Android App using SQLite

      June 1, 2025

      When Array uses less memory than Uint8Array (in V8)

      June 1, 2025

      Laravel 12 Starter Kits: Definite Guide Which to Choose

      June 1, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      My top 5 must-play PC games for the second half of 2025 — Will they live up to the hype?

      June 1, 2025
      Recent

      My top 5 must-play PC games for the second half of 2025 — Will they live up to the hype?

      June 1, 2025

      A week of hell with my Windows 11 PC really makes me appreciate the simplicity of Google’s Chromebook laptops

      June 1, 2025

      Elden Ring Nightreign Night Aspect: How to beat Heolstor the Nightlord, the final boss

      June 1, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Meet CoMERA: An Advanced Tensor Compression Framework Redefining AI Model Training with Speed and Precision

    Meet CoMERA: An Advanced Tensor Compression Framework Redefining AI Model Training with Speed and Precision

    December 26, 2024

    Training large-scale AI models such as transformers and language models have become an indispensable yet highly demanding process in AI. With billions of parameters, these models offer groundbreaking capabilities but come at a steep cost in terms of computational power, memory, and energy consumption. For example, OpenAI’s GPT-3 comprises 175 billion parameters and requires weeks of GPU training. Such massive requirements limit these technologies to organizations with substantial computational resources, exacerbating concerns over energy efficiency and environmental impact. Addressing these challenges has become critical to ensuring the broader accessibility and sustainability of AI advancements.

    The inefficiencies in training large models stem primarily from their reliance on dense matrices, which demand significant memory and computing power. The limited support for optimized low-precision or low-rank operations in modern GPUs further compounds these requirements. While some methods, such as matrix factorization and heuristic rank reduction, have been proposed to alleviate these issues, their real-world applicability is constrained. For instance, GaLore enables training on single-batch settings but suffers from impractical runtime overhead. Similarly, LTE, which adopts low-rank adapters, struggles with convergence on large-scale tasks. The lack of a method that simultaneously reduces memory usage, computational cost, and training time without compromising performance has created an urgent need for innovative solutions.

    Researchers from the University at Albany SUNY, the University of California at Santa Barbara, Amazon Alexa AI, and Meta introduced Computing-and Memory-Efficient training method via Rank-Adaptive tensor optimization (CoMERA), a novel framework that combines memory efficiency with computational speed through rank-adaptive tensor compression. Unlike traditional methods focusing solely on compression, CoMERA adopts a multi-objective optimization approach to balance compression ratio and model accuracy. It utilizes tensorized embeddings and advanced tensor-network contractions to optimize GPU utilization, reducing runtime overhead while maintaining robust performance. The framework also introduces CUDA Graph to minimize kernel-launching delays during GPU operations, a significant bottleneck in traditional tensor compression approaches.

    CoMERA’s foundation is based on adaptive tensor representations, which allow model layers to adjust their ranks dynamically based on resource constraints. By modifying tensor ranks, the framework achieves compression without compromising the integrity of neural network operations. This dynamic optimization is achieved through a two-stage training process: 

    1. An early stage focused on stable convergence 
    2. A late stage that fine-tunes ranks to meet specific compression targets

    In a six-encoder transformer model, CoMERA achieved compression ratios ranging from 43x in its early stage to an impressive 361x in its late-stage optimizations. Also, it reduced memory consumption by 9x compared to GaLore, with 2-3x faster training per epoch.

    When applied to transformer models trained on the MNLI dataset, CoMERA reduced model sizes from 256 MB to as little as 3.2 MB while preserving accuracy. In large-scale recommendation systems like DLRM, CoMERA compressed models by 99x and achieved a 7x reduction in peak memory usage. The framework also excelled in pre-training CodeBERT, a domain-specific large language model, where it gained a 4.23x overall compression ratio and demonstrated a 2x speedup during certain training phases. These results underscore its ability to handle diverse tasks and architectures, extending its applicability across domains.

    The key takeaways from this research are as follows:

    • CoMERA achieved compression ratios of up to 361x for specific layers and 99x for full models, drastically reducing storage and memory requirements.
    • The framework delivered 2-3x faster training times per epoch for transformers and recommendation systems, saving computational resources and time.
    • Using tensorized representations and CUDA Graph, CoMERA reduced peak memory consumption by 7x, enabling training on smaller GPUs.
    • CoMERA’s approach supports diverse architectures, including transformers and large language models, while maintaining or improving accuracy.
    • By lowering the energy and resource demands of training, CoMERA contributes to more sustainable AI practices and makes cutting-edge models accessible to a broader audience.

    In conclusion, CoMERA addresses some of the most significant barriers to AI scalability and accessibility by enabling faster, memory-efficient training. Its adaptive optimization capabilities and compatibility with modern hardware make it a compelling choice for organizations seeking to train large models without incurring prohibitive costs. This study’s results pave the way for further exploration of tensor-based optimizations in domains like distributed computing and resource-constrained edge devices.


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. Don’t Forget to join our 60k+ ML SubReddit.

    🚨 Trending: LG AI Research Releases EXAONE 3.5: Three Open-Source Bilingual Frontier AI-level Models Delivering Unmatched Instruction Following and Long Context Understanding for Global Leadership in Generative AI Excellence….

    The post Meet CoMERA: An Advanced Tensor Compression Framework Redefining AI Model Training with Speed and Precision appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleMeet ONI: A Distributed Architecture for Simultaneous Reinforcement Learning Policy and Intrinsic Reward Learning with LLM Feedback
    Next Article CoordTok: A Scalable Video Tokenizer that Learns a Mapping from Co-ordinate-based Representations to the Corresponding Patches of Input Videos

    Related Posts

    Security

    New Linux Flaws Allow Password Hash Theft via Core Dumps in Ubuntu, RHEL, Fedora

    June 2, 2025
    Security

    Google AI Edge Gallery: Unleash On-Device AI Power on Your Android (and Soon iOS!)

    June 2, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    AMD is creeping into gaming territory at CES 2025. Here’s why Intel should be worried

    News & Updates

    Introducing sub-issues: Enhancing issue management on GitHub

    News & Updates

    Revolutionizing OpenAI Chatbot UI Deployment with DevSecOps

    Development

    Apple Workshop on Privacy-Preserving Machine Learning 2024

    Development
    Hostinger

    Highlights

    XEphem – Serious Interactive Astronomical Software Ephemeris

    February 6, 2025

    XEphem is a Motif based ephemeris and planetarium program for Unix-like operating systems including Linux.…

    Hardware Inventory Policy

    February 26, 2025

    CVE-2025-47850 – JetBrains YouTrack Attachment Visibility Bypass

    May 20, 2025

    Meet Corgea: An AI-Powered Startup that Helps Companies Fix Vulnerable Source Codes

    July 2, 2024
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.