Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 20, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 20, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 20, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 20, 2025

      Helldivers 2: Heart of Democracy update is live, and you need to jump in to save Super Earth from the Illuminate

      May 20, 2025

      Qualcomm’s new Adreno Control Panel will let you fine-tune the GPU for certain games on Snapdragon X Elite devices

      May 20, 2025

      Samsung takes on LG’s best gaming TVs — adds NVIDIA G-SYNC support to 2025 flagship

      May 20, 2025

      The biggest unanswered questions about Xbox’s next-gen consoles

      May 20, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      HCL Commerce V9.1 – The Power of HCL Commerce Search

      May 20, 2025
      Recent

      HCL Commerce V9.1 – The Power of HCL Commerce Search

      May 20, 2025

      Community News: Latest PECL Releases (05.20.2025)

      May 20, 2025

      Getting Started with Personalization in Sitecore XM Cloud: Enable, Extend, and Execute

      May 20, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Helldivers 2: Heart of Democracy update is live, and you need to jump in to save Super Earth from the Illuminate

      May 20, 2025
      Recent

      Helldivers 2: Heart of Democracy update is live, and you need to jump in to save Super Earth from the Illuminate

      May 20, 2025

      Qualcomm’s new Adreno Control Panel will let you fine-tune the GPU for certain games on Snapdragon X Elite devices

      May 20, 2025

      Samsung takes on LG’s best gaming TVs — adds NVIDIA G-SYNC support to 2025 flagship

      May 20, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Google AI Proposes Re-Invoke: An Unsupervised AI Tool Retrieval Method that Effectively and Efficiently Retrieves the Most Relevant Tools from a Large Toolset

    Google AI Proposes Re-Invoke: An Unsupervised AI Tool Retrieval Method that Effectively and Efficiently Retrieves the Most Relevant Tools from a Large Toolset

    November 26, 2024

    Large Language Models (LLMs) have revolutionized the field of artificial intelligence, demonstrating remarkable capabilities in various tasks. However, to fully harness their potential, LLMs must be equipped with the ability to interact with the real world through tools. As the number of available tools continues to grow, effectively identifying and utilizing the most relevant tool for a given task becomes a critical challenge. Existing retrieval methods, such as BM25 and dense retrieval techniques, provide foundational solutions but need to be improved in their adaptability and precision when dealing with large or complex toolsets. These methods often fail to scale effectively, struggle with nuanced user intents, and need to utilize the contextual understanding capabilities of modern LLMs fully.

    A team of researchers from Google proposed Re-Invoke, an innovative, unsupervised tool retrieval framework that leverages LLMs to match user intents with tools better. The system enriches tool documents with synthetic queries generated by LLMs, improving their representation in an embedding space. User queries are then analyzed to extract underlying intents, which are encoded into the same space. By leveraging the power of LLMs, Re-Invoke addresses the critical need for a scalable and effective tool retrieval solution, enabling LLMs to unlock their full potential and deliver more comprehensive and accurate responses.

    Re-Invoke has two core components:

    1. Query Generator: LLMs generate diverse synthetic queries relevant to each tool. These queries are appended to the original tool documents, creating augmented tool documents that represent the tool’s capabilities comprehensively. The documents are encoded into an embedding space to facilitate similarity-based retrieval.
    2. Intent Extractor: User queries are processed by LLMs to identify core tool-related intents. These intents are also encoded into the embedding space to ensure compatibility with the tool representations.

    Re-Invoke employs multi-view similarity ranking, where similarity scores are calculated between extracted intents and augmented tool documents. The system aggregates these scores across multiple intents to rank tools, prioritizing the most relevant tools.

    In evaluations, Re-Invoke demonstrated significant performance gains over state-of-the-art methods, achieving a 20% relative improvement in nDCG@5 for single-tool retrieval and a 39% improvement in multi-tool retrieval on the ToolE dataset. Integrating with LLM agents led to higher task success rates, confirming its efficacy in real-world applications.

    Hostinger

    In conclusion, Re-Invoke presents a robust, unsupervised framework to address the tool retrieval problem for LLMs, combining intent extraction and document augmentation to achieve superior results. Its scalable design, enhanced retrieval accuracy, and adaptability to diverse toolsets make it a valuable advancement in the field, empowering LLMs to interact more effectively with external tools and deliver higher performance across tasks.


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. If you like our work, you will love our newsletter.. Don’t Forget to join our 55k+ ML SubReddit.

    🎙 🚨 ‘Evaluation of Large Language Model Vulnerabilities: A Comparative Analysis of Red Teaming Techniques’ Read the Full Report (Promoted)

    The post Google AI Proposes Re-Invoke: An Unsupervised AI Tool Retrieval Method that Effectively and Efficiently Retrieves the Most Relevant Tools from a Large Toolset appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleRed Teaming for AI: Strengthening Safety and Trust through External Evaluation
    Next Article On-Chip Implementation of Backpropagation for Spiking Neural Networks on Neuromorphic Hardware

    Related Posts

    Security

    Nmap 7.96 Launches with Lightning-Fast DNS and 612 Scripts

    May 21, 2025
    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-5011 – MoonlightL Hexo-Boot Cross-Site Scripting Vulnerability

    May 21, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    Preorder Samsung’s newest gaming monitor and get up to $225 off a Logitech accessory

    Development

    Asus waarschuwt voor kritieke AiCloud-kwetsbaarheid in wifi-routers

    Security

    Create Custom Snow Effects in React Native with Snowfall Component

    Development

    Databend is a cloud data warehouse

    Linux

    Highlights

    Development

    Google Chrome Bug Bounty Program Ups the Ante: Researchers Can Now Earn Up to $250,000

    August 29, 2024

    To incentivize deeper research and attract top security talent, Google has significantly increased the rewards…

    PowerToys brings “Command Palette” to Windows 11 as a new launcher experience

    April 1, 2025

    This AI Paper from CMU Introduces AgentKit: A Machine Learning Framework for Building AI Agents Using Natural Language

    April 19, 2024

    International Conference on Learning Representations (ICLR) 2025

    April 18, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.