Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 17, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 17, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 17, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 17, 2025

      Microsoft’s allegiance isn’t to OpenAI’s pricey models — Satya Nadella’s focus is selling any AI customers want for maximum profits

      May 17, 2025

      If you think you can do better than Xbox or PlayStation in the Console Wars, you may just want to try out this card game

      May 17, 2025

      Surviving a 10 year stint in dev hell, this retro-styled hack n’ slash has finally arrived on Xbox

      May 17, 2025

      Save $400 on the best Samsung TVs, laptops, tablets, and more when you sign up for Verizon 5G Home or Home Internet

      May 17, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      NodeSource N|Solid Runtime Release – May 2025: Performance, Stability & the Final Update for v18

      May 17, 2025
      Recent

      NodeSource N|Solid Runtime Release – May 2025: Performance, Stability & the Final Update for v18

      May 17, 2025

      Big Changes at Meteor Software: Our Next Chapter

      May 17, 2025

      Apps in Generative AI – Transforming the Digital Experience

      May 17, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Microsoft’s allegiance isn’t to OpenAI’s pricey models — Satya Nadella’s focus is selling any AI customers want for maximum profits

      May 17, 2025
      Recent

      Microsoft’s allegiance isn’t to OpenAI’s pricey models — Satya Nadella’s focus is selling any AI customers want for maximum profits

      May 17, 2025

      If you think you can do better than Xbox or PlayStation in the Console Wars, you may just want to try out this card game

      May 17, 2025

      Surviving a 10 year stint in dev hell, this retro-styled hack n’ slash has finally arrived on Xbox

      May 17, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»BEAL: A Bayesian Deep Active Learning Method for Efficient Deep Multi-Label Text Classification

    BEAL: A Bayesian Deep Active Learning Method for Efficient Deep Multi-Label Text Classification

    November 17, 2024

    Multi-label text classification (MLTC) assigns multiple relevant labels to a text. While deep learning models have achieved state-of-the-art results in this area, they require large amounts of labeled data, which is costly and time-consuming. Active learning helps optimize this process by selecting the most informative unlabeled samples for annotation, reducing the labeling effort. However, most existing active learning methods are designed for traditional single-label models and do not directly apply to deep multi-label models. Given the complexity of multi-label tasks and the high cost of annotations, there is a need for active learning techniques tailored to deep multi-label classification.

    Active learning enables a model to request labels for the most informative unlabeled samples, reducing annotation costs. Common active learning approaches include membership query synthesis, stream-based selective sampling, and pool-based sampling, focusing on the latter in this work. Uncertainty-based sampling is often used in multi-label classification, but challenges still must be solved in applying active learning to deep multi-label models. While Bayesian deep learning methods have shown promise for uncertainty estimation, most research has focused on single-label tasks. 

    Researchers from the Institute of Automation, Chinese Academy of Sciences, and other institutions propose BEAL, a deep active learning method for MLTC. BEAL uses Bayesian deep learning with dropout to infer the model’s posterior predictive distribution and introduces a new expected confidence-based acquisition function to select uncertain samples. Experiments with a BERT-based MLTC model on benchmark datasets like AAPD and StackOverflow show that BEAL improves training efficiency, achieving convergence with fewer labeled samples. This method can be extended to other multi-label classification tasks and significantly reduces labeled data requirements compared to existing methods.

    The methodology introduces a batch-mode active learning framework for deep multi-label text classification. Starting with a small labeled dataset, the framework iteratively selects unlabeled samples for annotation based on an acquisition function. This function chooses samples with the lowest expected confidence, measured by the model’s predictive uncertainty. Bayesian deep learning calculates the posterior predictive distribution using Monte Carlo dropout, approximating the model’s confidence. The acquisition function selects a batch of samples with the lowest expected confidence for labeling, improving the model’s efficiency by reducing the need for labeled data. The process continues until the model’s performance converges.

    In this study, the authors evaluate the BEAL method for deep multi-label text classification using two benchmark datasets: AAPD and StackOverflow. The process is compared with several active learning strategies, including random sampling, BADGE, BALD, Core-Set, and the full-data approach. BEAL outperforms these methods by selecting the most informative samples based on posterior predictive distribution, reducing the need for labeled data. Results show that BEAL achieves the highest performance with fewer labeled samples than others, requiring only 64% of labeled samples on AAPD and 40% on StackOverflow. An ablation study highlights the advantage of using Bayesian deep learning in BEAL.

    In conclusion, the study introduces BEAL, an active learning method for deep MLTC models. BEAL uses Bayesian deep learning to infer the posterior predictive distribution and defines an expected confidence-based acquisition function to select uncertain samples for training. Experimental results show that BEAL outperforms other active learning methods, enabling more efficient model training with fewer labeled samples. This is valuable in real-world applications where obtaining large-scale labeled data is difficult. Future work will explore integrating diversity-based methods to reduce further the labeled data required for effective training of MLTC models.


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. If you like our work, you will love our newsletter.. Don’t Forget to join our 55k+ ML SubReddit.

    [FREE AI WEBINAR] Implementing Intelligent Document Processing with GenAI in Financial Services and Real Estate Transactions– From Framework to Production

    The post BEAL: A Bayesian Deep Active Learning Method for Efficient Deep Multi-Label Text Classification appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleH-DPO: Advancing Language Model Alignment through Entropy Control
    Next Article Google AI Introduces LAuReL (Learned Augmented Residual Layer): Revolutionizing Neural Networks with Enhanced Residual Connections for Efficient Model Performance

    Related Posts

    Development

    February 2025 Baseline monthly digest

    May 17, 2025
    Development

    Learn A1 Level Spanish

    May 17, 2025
    Leave A Reply Cancel Reply

    Hostinger

    Continue Reading

    CVE-2025-3985 – Apereo CAS Remote Regular Expression Denial of Service (DoS)

    Common Vulnerabilities and Exposures (CVEs)

    NerdFetch – fetch script using Nerdfonts

    Development

    Capgemini e MongoDB insieme per liberare le migliori energie dei clienti

    Databases

    This AI Paper Explores Quantization Techniques and Their Impact on Mathematical Reasoning in Large Language Models

    Machine Learning

    Highlights

    CodeSOD: Yes, No, NO NO NO NO

    July 31, 2024

    Mike was doing work for a mobile services provider. He found this in their code:…

    11 Versatile Use Cases of Meta’s Segment Anything Model 2 (SAM 2)

    August 5, 2024

    How can JMeter be used to test the performance of Android/iOS native apps?

    August 22, 2024

    CVE-2025-46758 – Apache HTTP Server Arbitrary File Disclosure

    April 29, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.