Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 16, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 16, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 16, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 16, 2025

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025

      Minecraft licensing robbed us of this controversial NFL schedule release video

      May 16, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The power of generators

      May 16, 2025
      Recent

      The power of generators

      May 16, 2025

      Simplify Factory Associations with Laravel’s UseFactory Attribute

      May 16, 2025

      This Week in Laravel: React Native, PhpStorm Junie, and more

      May 16, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025
      Recent

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»FinSafeNet: Advancing Digital Banking Security with Deep Learning for Fraud Detection and Real-Time Transaction Protection

    FinSafeNet: Advancing Digital Banking Security with Deep Learning for Fraud Detection and Real-Time Transaction Protection

    November 13, 2024

    With rapid technological advances and increased internet use in business, cybersecurity has become a major global concern, especially in digital banking and payments. Digital systems offer efficiency and convenience but expose users to fraud risks, including identity theft and unauthorized access. Traditional methods struggle to keep up with complex fraud tactics, pushing financial institutions to adopt AI-based solutions. AI enhances fraud detection by analyzing vast transaction data, identifying suspicious patterns, and automating threat detection. However, high costs and data quality issues pose challenges, especially for smaller institutions, underscoring the need for balanced, effective cybersecurity measures in the financial sector.

    Current bank security systems often fall short against today’s advanced cyber threats due to outdated technologies. Traditional reactive measures respond only after a breach, making them ineffective against sophisticated or new attacks. Legacy banking systems, which lack features like real-time monitoring and multi-factor authentication, are particularly vulnerable. This reliance on outdated methods exposes banks to financial losses, reputational harm, and regulatory penalties. Banks must adopt proactive, technology-driven strategies to address these risks, leveraging AI, machine learning, and behavioral analytics. Fostering cybersecurity awareness among employees can further strengthen defenses against cyber threats.

    Researchers from Majmaah University, King Saud University, and the University of Wollongong developed FinSafeNet, a deep-learning model for secure digital banking. Based on a Bi-LSTM, CNN, and a dual attention mechanism, this model addresses real-time transaction security. It incorporates an Improved Snow-Lion Optimization Algorithm (I-SLOA) for efficient feature selection, blending Hierarchical Particle Swarm Optimization and Adaptive Differential Evolution. FinSafeNet also employs Multi-Kernel PCA with Nyström Approximation to reduce computational demands and enhance performance. Tested on the Paysim database, it achieved 97.8% accuracy, surpassing traditional models and improving digital banking transaction security.

    The proposed cybersecurity model for digital banking utilizes deep learning, beginning with data acquisition from the PaySim and Credit Card datasets, which simulate mobile money and card transactions to study fraud. Data is cleaned and normalized, with missing values filled and superfluous columns removed. Key features are extracted using Joint Mutual Information Maximization (JMIM), which outperforms standard methods by identifying the most relevant features for fraud detection. Further, an optimized feature subset is selected through an I-SLOA, which combines adaptive differential evolution and particle swarm optimization, enhancing detection accuracy across both datasets.

    The FinSafeNet model, implemented in Python, was evaluated using the Paysim and Credit Card datasets. Compared to state-of-the-art models like VGGNET, RESNET, and CNN, FinSafeNet achieved superior results across metrics like accuracy, precision, sensitivity, and specificity. It reached 97.9% accuracy on Paysim and 98.5% on Credit Card data, with low error rates (FPR and FNR). Its dual-attention mechanism, Bi-LSTM integration, and optimized feature selection made it highly effective for fraud detection. However, FinSafeNet’s adaptability depends on diverse training data and could face real-time scalability challenges.

    In conclusion, the FinSafeNet model offers a major advancement in digital banking security, leveraging Bi-LSTM, CNN, and a dual-attention mechanism for accurate fraud detection with minimal processing time. Enhanced by the I-SLOA, which combines HPSO and ADE for high-quality feature selection, the model achieved 97.8% accuracy on the Paysim dataset, surpassing traditional methods. By integrating Multi-Kernel PCA (MKPCA) with Nyström Approximation, it efficiently handles large datasets without compromising performance. FinSafeNet’s success suggests its potential for real-time deployment in diverse banking environments, and future blockchain integration could further reinforce transaction security against cyber threats.


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. If you like our work, you will love our newsletter.. Don’t Forget to join our 55k+ ML SubReddit.

    [Upcoming Live LinkedIn event] ‘One Platform, Multimodal Possibilities,’ where Encord CEO Eric Landau and Head of Product Engineering, Justin Sharps will talk how they are reinventing data development process to help teams build game-changing multimodal AI models, fast‘

    The post FinSafeNet: Advancing Digital Banking Security with Deep Learning for Fraud Detection and Real-Time Transaction Protection appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleCMU Researchers Propose OpenFLAME: A Federated and Decentralized Localization Service
    Next Article Top 15 Cloud Hosting Providers

    Related Posts

    Security

    Nmap 7.96 Launches with Lightning-Fast DNS and 612 Scripts

    May 17, 2025
    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-40906 – MongoDB BSON Serialization BSON::XS Multiple Vulnerabilities

    May 17, 2025
    Leave A Reply Cancel Reply

    Hostinger

    Continue Reading

    How to fix storage drive not showing on File Explorer on Windows 11

    Development

    3 Essential Design Trends, November 2024

    Development

    Kie.ai: Affordable and Reliable 4o Image API(The latest released)

    Web Development

    Why people are mad at Figma

    Web Development
    Hostinger

    Highlights

    News & Updates

    ‘Clair Obscur: Expedition 33’ hits 1 million copies sold in just three days (not including Xbox Game Pass) proving demand for photorealistic JRPG-styled games

    April 27, 2025

    They said you don’t want turn-based games. Well, it’s my turn to inform you that…

    Stargazing in Your Laravel App with Intervention Zodiac

    March 20, 2025

    Our next-generation model: Gemini 1.5

    May 13, 2025

    CVE-2025-40630 – IceWarp Mail Server Open Redirection Vulnerability

    May 16, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.