Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 13, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 13, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 13, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 13, 2025

      This $4 Steam Deck game includes the most-played classics from my childhood — and it will save you paper

      May 13, 2025

      Microsoft shares rare look at radical Windows 11 Start menu designs it explored before settling on the least interesting one of the bunch

      May 13, 2025

      NVIDIA’s new GPU driver adds DOOM: The Dark Ages support and improves DLSS in Microsoft Flight Simulator 2024

      May 13, 2025

      How to install and use Ollama to run AI LLMs on your Windows 11 PC

      May 13, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Community News: Latest PECL Releases (05.13.2025)

      May 13, 2025
      Recent

      Community News: Latest PECL Releases (05.13.2025)

      May 13, 2025

      How We Use Epic Branches. Without Breaking Our Flow.

      May 13, 2025

      I think the ergonomics of generators is growing on me.

      May 13, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      This $4 Steam Deck game includes the most-played classics from my childhood — and it will save you paper

      May 13, 2025
      Recent

      This $4 Steam Deck game includes the most-played classics from my childhood — and it will save you paper

      May 13, 2025

      Microsoft shares rare look at radical Windows 11 Start menu designs it explored before settling on the least interesting one of the bunch

      May 13, 2025

      NVIDIA’s new GPU driver adds DOOM: The Dark Ages support and improves DLSS in Microsoft Flight Simulator 2024

      May 13, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»FEDKIM: A Federated Knowledge Injection Framework for Enhancing Multimodal Medical Foundation Models

    FEDKIM: A Federated Knowledge Injection Framework for Enhancing Multimodal Medical Foundation Models

    November 5, 2024

    Foundation models show impressive capabilities across tasks and modalities, outperforming traditional AI approaches often task-specific and limited by modality. In medicine, however, developing such models faces challenges due to restricted access to diverse data and strict privacy laws. While capable in specific areas, existing medical foundation models need to be improved by their focus on particular tasks and modalities. The limitations include difficulties in centralized training due to privacy laws like HIPAA and GDPR and limited adaptability across functions. Federated learning offers a solution, enabling decentralized model development without sharing sensitive data directly while incorporating broader medical knowledge, which remains an ongoing challenge.

    Foundation models, with vast parameters and datasets, have become prominent in healthcare, offering solutions for tasks like disease detection and precision oncology. Despite these advances, medical foundation models are limited by the complexities of healthcare data. Federated learning (FL) enables fine-tuning foundation models with locally stored data, supporting full or parameter-efficient fine-tuning (PEFT) methods like Low-Rank Adaptation (LoRA), which reduces computational demands by factorizing parameters. While Mixture of Experts (MOE) approaches further refine PEFT for complex tasks, existing methods don’t fully address the diverse, multimodal needs unique to healthcare settings.

    Researchers from Pennsylvania State University and Georgia State University have developed FEDKIM, an innovative knowledge injection method to expand medical foundation models within a federated learning framework. FEDKIM uses lightweight local models to gather healthcare insights from private data, which are incorporated into a centralized foundation model. This is achieved through the Multitask Multimodal Mixture of Experts (M3OE) module, which adapts to different medical tasks and modalities while safeguarding data privacy. Experiments on twelve tasks across seven modalities confirm FEDKIM’s capability to scale medical foundation models effectively, even without direct access to sensitive data.

    The FEDKIM framework comprises two main components: local client knowledge extractors and a central server-side knowledge injector. Each client, representing a hospital or medical institute, trains a multimodal, multi-task model on private data, which is then shared with the server. These client parameters are aggregated and injected into a central medical foundation model on the server, enhanced with a Multitask M3OE module. This module dynamically selects expert systems for each task-modality pair, allowing FEDKIM to handle complex medical scenarios. This iterative process updates local and server models, enabling efficient knowledge integration and privacy preservation.

    The study assesses FEDKIM’s performance through zero-shot and fine-tuning evaluations. In zero-shot tests, where training and evaluation tasks differ, FEDKIM outperformed baselines like FedPlug and FedPlugL, particularly in handling unseen tasks, due to its M3OE module that selects experts adaptively. FEDKIM also showed strong performance with both FedAvg and FedProx backbones, though FedProx generally enhanced results. Fine-tuning evaluation on known tasks confirmed FEDKIM’s superior performance, especially over FedPlug variants, as knowledge injected through federated learning proved valuable. Ablation studies underscored the necessity of FEDKIM’s modules, validating their importance in handling complex healthcare tasks and modalities.

    In conclusion, the study introduces FEDKIM, an approach for enhancing medical foundation models through knowledge injection. FEDKIM utilizes federated learning to extract knowledge from safely distributed private healthcare data. It integrates it into a central model using the M3OE module, which adapts to handle diverse tasks and modalities. This technique addresses challenges in medical AI, such as privacy constraints and limited data access, while improving model performance across complex tasks. Experimental results across 12 tasks and seven modalities confirm FEDKIM’s effectiveness, highlighting its potential for building comprehensive, privacy-preserving healthcare models without direct access to sensitive data.


    Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter and join our Telegram Channel and LinkedIn Group. If you like our work, you will love our newsletter.. Don’t Forget to join our 55k+ ML SubReddit.

    [Sponsorship Opportunity with us] Promote Your Research/Product/Webinar with 1Million+ Monthly Readers and 500k+ Community Members

    The post FEDKIM: A Federated Knowledge Injection Framework for Enhancing Multimodal Medical Foundation Models appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleThis AI Research Diagnoses Problems in Recurrent Neural Networks RNN-based Language Models and Corrects them to Outperform Transformer-based Models on Long Sequence Tasks
    Next Article How to Become a Data Analyst? Step by Step Guide

    Related Posts

    Security

    Nmap 7.96 Launches with Lightning-Fast DNS and 612 Scripts

    May 14, 2025
    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-47705 – Drupal IFrame Remove Filter Cross-Site Scripting (XSS)

    May 14, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    How to auto scroll Appium Server Console log at bottom

    Development

    Battery Health has finally come to Android, but only on Pixel devices

    Operating Systems

    AI stirs up trouble in the science peer review process

    Artificial Intelligence

    SCUF drops a hot new Xbox controller designed by pros for pros (and those of us who think we are)

    News & Updates

    Highlights

    Apple settles Siri lawsuit for $95 million – here’s how much you could get

    January 2, 2025

    The class action privacy suit contends that Siri recorded and shared Apple users’ conversations. Apple…

    GeoServer and GeoTools Address XPath Expression Injection Vulnerabilities

    July 4, 2024
    PlayPraetor Reloaded: CTM360 Uncovers a Play Masquerading Party

    PlayPraetor Reloaded: CTM360 Uncovers a Play Masquerading Party

    April 10, 2025

    NeuralOperator: A New Python Library for Learning Neural Operators in PyTorch

    December 29, 2024
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.