Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 22, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 22, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 22, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 22, 2025

      Sam Altman says ChatGPT’s viral Ghibli effect “forced OpenAI to do a lot of unnatural things”

      May 22, 2025

      How to get started with Microsoft Copilot on Windows 11

      May 22, 2025

      Microsoft blocks employees from sending emails that mention “Palestine” or “Gaza”

      May 22, 2025

      I missed out on the Clair Obscur: Expedition 33 Collector’s Edition but thankfully, the developers are launching something special

      May 22, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Perficient is Shaping the Future of Salesforce Innovation

      May 22, 2025
      Recent

      Perficient is Shaping the Future of Salesforce Innovation

      May 22, 2025

      Opal – Optimizely’s AI-Powered Marketing Assistant

      May 22, 2025

      Content Compliance Without the Chaos: How Optimizely CMP Empowers Financial Services Marketers

      May 22, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Sam Altman says ChatGPT’s viral Ghibli effect “forced OpenAI to do a lot of unnatural things”

      May 22, 2025
      Recent

      Sam Altman says ChatGPT’s viral Ghibli effect “forced OpenAI to do a lot of unnatural things”

      May 22, 2025

      How to get started with Microsoft Copilot on Windows 11

      May 22, 2025

      Microsoft blocks employees from sending emails that mention “Palestine” or “Gaza”

      May 22, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»EAGLE-2: An Efficient and Lossless Speculative Sampling Method Achieving Speedup Ratios 3.05x – 4.26x which is 20% – 40% Faster than EAGLE-1

    EAGLE-2: An Efficient and Lossless Speculative Sampling Method Achieving Speedup Ratios 3.05x – 4.26x which is 20% – 40% Faster than EAGLE-1

    June 26, 2024

    Large language models (LLMs) have significantly advanced the field of natural language processing (NLP). These models, renowned for their ability to generate and understand human language, are applied in various domains such as chatbots, translation services, and content creation. Continuous development in this field aims to enhance the efficiency and effectiveness of these models, making them more responsive and accurate for real-time applications.

    A major challenge LLMs face is the substantial computational cost and time required for inference. As these models increase, generating each token during autoregressive tasks becomes slower, impeding real-time applications. Addressing this issue is crucial to improving applications’ performance and user experience relying on LLMs, particularly when quick responses are essential.

    Current methods to alleviate this issue include speculative sampling techniques, which generate and verify tokens in parallel to reduce latency. Traditional speculative sampling methods often rely on static draft trees that do not account for context, leading to inefficiencies and suboptimal acceptance rates of draft tokens. These methods aim to reduce inference time but still face limitations in performance.

    Researchers from Peking University, Microsoft Research, the University of Waterloo and Vector Institute introduced EAGLE-2, a method leveraging a context-aware dynamic draft tree to enhance speculative sampling. EAGLE-2 builds upon the previous EAGLE method, offering significant improvements in speed while maintaining the quality of generated text. This method dynamically adjusts the draft tree based on context, using confidence scores from the draft model to approximate acceptance rates.

    EAGLE-2 dynamically adjusts the draft tree based on context, enhancing speculative sampling. Its methodology includes two main phases: expansion and reranking. The process begins with the expansion phase, where the draft model inputs the most promising nodes from the latest layer of the draft tree to form the next layer. Confidence scores from the draft model approximate acceptance rates, allowing efficient prediction and verification of tokens. During the reranking phase, tokens with higher acceptance probabilities are selected for the original LLM’s input during verification. This two-phase approach ensures the draft tree adapts to the context, significantly improving token acceptance rates and overall efficiency. This method eliminates the need for multiple forward passes, thus accelerating the inference process without compromising the quality of the generated text.

    The proposed method showed remarkable results. For instance, in multi-turn conversations, EAGLE-2 achieved a speedup of approximately 4.26x, while in code generation tasks, it reached up to 5x. The average number of tokens generated per drafting-verification cycle was significantly higher than other methods, roughly twice that of standard speculative sampling. This performance boost makes EAGLE-2 a valuable tool for real-time NLP applications.

    Performance evaluations also show that EAGLE-2 achieves speedup ratios between 3.05x and 4.26x across various tasks and LLMs, outperforming the previous EAGLE method by 20%-40%.  It maintains the distribution of the generated text, ensuring no loss in the output quality despite the increased speed. EAGLE-2 demonstrated the best performance in extensive tests across six tasks and three series of LLMs, confirming its robustness and efficiency.

    In conclusion, EAGLE-2 effectively addresses computational inefficiencies in LLM inference by introducing a context-aware dynamic draft tree. This method offers a substantial performance boost without compromising the quality of the generated text, making it a significant advancement in NLP. Future research and applications should consider integrating dynamic context adjustments to enhance the performance of LLMs further.

    Check out the Paper and GitHub. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. 

    Join our Telegram Channel and LinkedIn Group.

    If you like our work, you will love our newsletter..

    Don’t Forget to join our 45k+ ML SubReddit

    Create, edit, and augment tabular data with the first compound AI system, Gretel Navigator, now generally available! [Advertisement]

    The post EAGLE-2: An Efficient and Lossless Speculative Sampling Method Achieving Speedup Ratios 3.05x – 4.26x which is 20% – 40% Faster than EAGLE-1 appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleNot able to run application through emulator in mac
    Next Article A New Machine Learning Research from UCLA Uncovers Unexpected Irregularities and Non-Smoothness in LLMs’ In-Context Decision Boundaries

    Related Posts

    Security

    Nmap 7.96 Launches with Lightning-Fast DNS and 612 Scripts

    May 23, 2025
    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-47512 – Tainacan Path Traversal

    May 23, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    Windows Recall will introduce the ability to filter apps and websites from being captured by the app

    Operating Systems

    The best e-readers of 2024: Expert tested and reviewed

    Development

    Cryptojacking Campaign Targets Misconfigured Kubernetes Clusters

    Development

    CVE-2025-41403 – Zohocorp ManageEngine ADAudit Plus SQL Injection

    Common Vulnerabilities and Exposures (CVEs)

    Highlights

    Development

    Open Telemetry Package for Laravel

    January 29, 2025

    The LaraOTel OpenTelemetry package for Laravel provides a simple way to incorporate OpenTelemetry in your…

    Researchers Expose New Intel CPU Flaws Enabling Memory Leaks and Spectre v2 Attacks

    May 16, 2025

    Playwright Surpasses Cypress (What’s Next)

    June 28, 2024

    This retractable USB-C charger is my new favorite travel accessory (and it’s on sale for Black Friday)

    November 23, 2024
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.