Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      June 3, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      June 3, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      June 3, 2025

      How To Prevent WordPress SQL Injection Attacks

      June 3, 2025

      All the WWE 2K25 locker codes that are currently active

      June 3, 2025

      PSA: You don’t need to spend $400+ to upgrade your Xbox Series X|S storage

      June 3, 2025

      UK civil servants saved 24 minutes per day using Microsoft Copilot, saving two weeks each per year according to a new report

      June 3, 2025

      These solid-state fans will revolutionize cooling in our PCs and laptops

      June 3, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Community News: Latest PECL Releases (06.03.2025)

      June 3, 2025
      Recent

      Community News: Latest PECL Releases (06.03.2025)

      June 3, 2025

      A Comprehensive Guide to Azure Firewall

      June 3, 2025

      Test Job Failures Precisely with Laravel’s assertFailedWith Method

      June 3, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      All the WWE 2K25 locker codes that are currently active

      June 3, 2025
      Recent

      All the WWE 2K25 locker codes that are currently active

      June 3, 2025

      PSA: You don’t need to spend $400+ to upgrade your Xbox Series X|S storage

      June 3, 2025

      UK civil servants saved 24 minutes per day using Microsoft Copilot, saving two weeks each per year according to a new report

      June 3, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Revolutionizing Personalized Medicine: The Promise and Challenges of Causal Machine Learning in Clinical Care

    Revolutionizing Personalized Medicine: The Promise and Challenges of Causal Machine Learning in Clinical Care

    June 18, 2024

    Recent advancements in ML are revolutionizing how we evaluate treatments by predicting the causal impact of treatments on patient outcomes, known as causal ML. This approach leverages data from randomized controlled trials (RCTs) and real-world data sources like clinical registries and electronic health records to estimate the effects of treatments. A major advantage of causal ML is its ability to provide individualized treatment effects and personalized outcome predictions under different treatment scenarios, such as survival or readmission rates. This enables a more tailored approach to patient care. However, using causal ML cautiously is crucial, as its conclusions depend on underlying assumptions that cannot be directly verified.

    Researchers from institutions including LMU Munich, University of Cambridge, and Harvard Medical School highlight how causal ML differs from traditional medical statistical and ML methods. Causal ML offers advanced tools for estimating individualized treatment effects from diverse data sources like electronic health records and imaging. It supports personalized care by predicting how treatments affect different patients, accounting for variables like drug metabolism and genetic data. Despite its potential, using causal ML requires careful attention to avoid bias and incorrect predictions. The researchers outline steps for its effective use and recommend best practices for integrating causal ML into clinical settings.

    Causal ML is essential when you need to estimate how treatments affect outcomes, unlike traditional predictive ML, which forecasts outcomes without considering treatment effects. For example, while traditional ML can predict the risk of diabetes, causal ML can assess how this risk changes with specific treatments. It answers ‘what if’ scenarios, such as predicting survival rates under different cancer treatments. Unlike classical statistics, which often assume known relationships, causal ML accommodates complex, high-dimensional data and less rigid models. However, it requires careful handling of biases and assumptions, especially in distinguishing between observed and unobserved influences.

    Causal ML is crucial when you need to understand how treatments affect outcomes rather than just predicting them. Unlike traditional ML, which often focuses on risk predictions, causal ML estimates the changes in outcomes due to different treatments. It can assess average treatment effects (ATE) across populations or provide more detailed insights through conditional average treatment effects (CATE) for specific patient subgroups. Causal ML handles binary (e.g., treat vs. no treat) and continuous (e.g., varying doses) treatment scenarios. Essential steps include defining the causal problem, selecting the causal quantity, and ensuring assumptions like no unmeasured confounding are plausible to avoid bias. 

    Causal ML methods are chosen based on the causal question and the type of treatment effect, such as ATE or CATE. Methods include model-agnostic meta-learners, like S-learners and T-learners, flexible with any ML model, and model-specific techniques, like causal trees and forests, which adapt existing models for treatment effects. Continuous treatments require specialized methods due to infinite possible values. To evaluate these methods, randomized data is ideal, but comparing predictions of factual outcomes or using pseudo-outcomes can also help. Robustness checks and careful assumption validation, particularly regarding confounders and positivity, are essential for reliable results.

    In conclusion, Causal ML is promising for personalizing medical treatments and improving patient outcomes by estimating treatment effects from diverse medical data. It can identify which patient subgroups may benefit most from specific treatments and analyze treatment effects in real-world data (RWD), addressing the limitations of traditional RCTs. Future research must bridge the gap between ML advancements and clinical application, ensuring robust methods and uncertainty quantification. Challenges include the need for large datasets, reliable software tools, and regulatory frameworks. Cross-disciplinary collaboration is essential to integrate causal ML into clinical practice and support decision-making through personalized predictions.

    Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. 

    Join our Telegram Channel and LinkedIn Group.

    If you like our work, you will love our newsletter..

    Don’t Forget to join our 44k+ ML SubReddit

    The post Revolutionizing Personalized Medicine: The Promise and Challenges of Causal Machine Learning in Clinical Care appeared first on MarkTechPost.

    Source: Read More 

    Hostinger
    Facebook Twitter Reddit Email Copy Link
    Previous ArticleRevolutionizing Accessibility: Google AI’s Human I/O Unifies Egocentric Vision, Multimodal Sensing, and LLM Reasoning to Detect and Assess User Impairments
    Next Article From Phantoms to Facts: DPO Fine-Tuning Minimizes Hallucinations in Radiology Reports, Boosting Clinical Trust

    Related Posts

    Security

    BitoPro Silent on $11.5M Hack: Investigator Uncovers Massive Crypto Theft

    June 3, 2025
    Security

    New Linux Vulnerabilities

    June 3, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    CAST simplifies SBOM creation with new free tool

    Development

    How do you test a backend API?

    Development

    How To Build A Multilingual Website With Nuxt.js

    Development

    Salesforce AI Releases BLIP3-o: A Fully Open-Source Unified Multimodal Model Built with CLIP Embeddings and Flow Matching for Image Understanding and Generation

    Machine Learning

    Highlights

    Machine Learning

    ChunkKV: Optimizing KV Cache Compression for Efficient Long-Context Inference in LLMs

    February 9, 2025

    Efficient long-context inference with LLMs requires managing substantial GPU memory due to the high storage…

    Meta Pauses AI Training on EU User Data Amid Privacy Concerns

    June 15, 2024

    “Deep Research has been a personal AGI moment for me”: OpenAI’s new AI agentic tool simulates a personal research analyst

    February 4, 2025

    Chickens to Chatbots: Web Design’s Next Evolution

    January 25, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.