Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 16, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 16, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 16, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 16, 2025

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025

      Minecraft licensing robbed us of this controversial NFL schedule release video

      May 16, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The power of generators

      May 16, 2025
      Recent

      The power of generators

      May 16, 2025

      Simplify Factory Associations with Laravel’s UseFactory Attribute

      May 16, 2025

      This Week in Laravel: React Native, PhpStorm Junie, and more

      May 16, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025
      Recent

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Deciphering Doubt: Navigating Uncertainty in LLM Responses

    Deciphering Doubt: Navigating Uncertainty in LLM Responses

    June 9, 2024

    This paper explores the domain of uncertainty quantification within large language models (LLMs) to identify scenarios where uncertainty in response to queries is significant. The study encompasses both epistemic and aleatoric uncertainties. Epistemic uncertainty arises from a lack of knowledge or data about the ground truth, whereas aleatoric uncertainty stems from inherent randomness in the prediction problem. Properly identifying these uncertainties is crucial for enhancing the reliability and truthfulness of LLM responses, especially to detect and mitigate hallucinations or inaccurate responses generated by these models.

    There are currently several methods for detecting hallucinations in large language models (LLMs), each with its own set of limitations. One common method is the probability of the greedy response (T0), which assesses the likelihood of the most probable response generated by the model. Another method is the semantic-entropy method (S.E.), which measures the entropy of the semantic distribution of the responses. Finally, the self-verification method (S.V.) involves the model verifying its responses to estimate uncertainty.

    Despite their usefulness, these methods have notable drawbacks. The probability of the greedy response is often sensitive to the size of the label set, meaning it may not perform well when there are many possible responses. The semantic-entropy method (S.E.) relies on first-order scores that do not consider the joint distribution of responses, which can lead to incomplete uncertainty assessments. Similarly, the self-verification method (S.V.) does not account for the full range of possible responses the model can generate, potentially overlooking significant aspects of uncertainty.

    To overcome the limitations of current methods, the proposed approach involves creating a combined distribution for multiple responses from the LLM for a specific query using iterative prompting. This involves asking the LLM to generate a response to a query and then asking it to generate subsequent responses while including previous ones in the prompt. The joint distribution approximates the ground truth if the responses are independent, indicating low epistemic uncertainty. However, if the responses are influenced by each other, it signifies high epistemic uncertainty. This iterative prompting procedure allows the researchers to derive an information-theoretic metric of epistemic uncertainty. They quantify this by measuring the mutual information (MI) of the joint distribution of responses, which is insensitive to aleatoric uncertainty. A finite-sample estimator for this MI is developed, proving to have negligible error in practical applications despite the potentially infinite support of LLM outputs.

    An algorithm for hallucination detection based on this MI metric is also discussed. By setting a threshold through a calibration procedure, the method demonstrates superior performance compared to traditional entropy-based approaches, especially in datasets with mixed single-label and multi-label queries. It maintains high recall rates while minimizing errors, making it a robust tool for improving the reliability of LLM outputs.

    This paper presents a significant advancement in quantifying uncertainty in LLMs by distinguishing between epistemic and aleatoric uncertainty. The proposed iterative prompting and mutual information-based metric offer a more nuanced understanding of LLM confidence, enhancing the detection of hallucinations and improving overall response accuracy. This approach addresses a critical limitation of existing methods and provides a practical and effective solution for real-world applications of LLMs. 

    Check out the Paper. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

    If you like our work, you will love our newsletter..

    Don’t Forget to join our 44k+ ML SubReddit

    The post Deciphering Doubt: Navigating Uncertainty in LLM Responses appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleGoogle AI Proposes a Machine Learning Framework for Understanding AI Models in Medical Imaging
    Next Article The Missing Piece: Combining Foundation Models and Open-Endedness for Artificial Superhuman Intelligence ASI

    Related Posts

    Security

    Nmap 7.96 Launches with Lightning-Fast DNS and 612 Scripts

    May 17, 2025
    Common Vulnerabilities and Exposures (CVEs)

    CVE-2024-47893 – VMware GPU Firmware Memory Disclosure

    May 17, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    FOSS Weekly #24.51: OBS Tip, New Linux Tools, Fun With Terminal, New Releases and More

    Development

    How your inefficient data center hampers sustainability – and AI adoption

    Development

    Winlator Alternative – 5 Best Picks for Beginner-Friendly Emulation

    Operating Systems

    CVE-2025-3902 – Drupal Cross-Site Scripting (XSS)

    Common Vulnerabilities and Exposures (CVEs)

    Highlights

    Community News: Latest PECL Releases (03.04.2025)

    March 28, 2025

    Latest PECL Releases: krb5 1.2.3 – [BUG] Fix crash with empty channel binding argument mongodb…

    Linux Mint is Redesigning the Cinnamon App Menu

    March 1, 2025

    ryoluo/sail-ssl

    March 16, 2025

    FBI Recovers 7,000 LockBit Keys, Encourages Victims to Come Forward

    June 6, 2024
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.