Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Sunshine And March Vibes (2025 Wallpapers Edition)

      May 16, 2025

      The Case For Minimal WordPress Setups: A Contrarian View On Theme Frameworks

      May 16, 2025

      How To Fix Largest Contentful Paint Issues With Subpart Analysis

      May 16, 2025

      How To Prevent WordPress SQL Injection Attacks

      May 16, 2025

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025

      Minecraft licensing robbed us of this controversial NFL schedule release video

      May 16, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      The power of generators

      May 16, 2025
      Recent

      The power of generators

      May 16, 2025

      Simplify Factory Associations with Laravel’s UseFactory Attribute

      May 16, 2025

      This Week in Laravel: React Native, PhpStorm Junie, and more

      May 16, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025
      Recent

      Microsoft has closed its “Experience Center” store in Sydney, Australia — as it ramps up a continued digital growth campaign

      May 16, 2025

      Bing Search APIs to be “decommissioned completely” as Microsoft urges developers to use its Azure agentic AI alternative

      May 16, 2025

      Microsoft might kill the Surface Laptop Studio as production is quietly halted

      May 16, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Google AI Proposes a Machine Learning Framework for Understanding AI Models in Medical Imaging

    Google AI Proposes a Machine Learning Framework for Understanding AI Models in Medical Imaging

    June 9, 2024

    Recent advancements in machine learning have been actively used to improve the domain of healthcare. Despite performing remarkably well on various tasks, these models are often unable to provide a clear understanding of how specific visual changes affect ML decisions. These AI models have shown great promise and even human capabilities in some cases, but there remains a critical need for explanations of what signals these models have learned. Such explanations are essential to building trust among medical professionals and potentially uncovering novel scientific insights from the data, which are not yet recognized by experts. Google researchers introduced a novel framework, StylEx, that leverages generative AI to address the challenges in the field of medical imaging, especially focusing on the lack of explainability in AI models. 

    Current methods for explaining AI models in computer vision, particularly in medical imaging, often rely on techniques that generate heatmaps indicating the importance of different pixels in an image. These methods, while useful for showing the “where” of important features, fall short of explaining the “what” and “why” behind these features. Specifically, they do not typically explain higher-level characteristics like texture, shape, or size that might underlie the model’s decisions. To overcome these limitations, Google’s StylEx leverages a StyleGAN-based image generator guided by a classifier. This approach aims to generate hypotheses by identifying and visualizing visual signals correlated with a classifier’s predictions. 

    The workflow involves four key steps: training a classifier to confirm the presence of relevant signals in the imagery, training a StylEx model to generate images guided by the classifier, automatically detecting and visualizing the top visual attributes influencing the classifier, and having an interdisciplinary panel of experts review these findings to formulate hypotheses for future research. First, the proposed workflow starts by training a classifier on a given medical imaging dataset to perform a specific task, ensuring that the classifier achieves high performance (above 0.8 accuracy). This step confirms that the images contain relevant information for the task. 

    Second, a StyleGAN2-based generator is trained to produce realistic images while preserving the classifier’s decision-making process. This generator is adapted to focus on attributes that significantly affect the classifier’s output. The third stage involves automatically selecting the top attributes in the StyleSpace of the generator that influence the classifier’s predictions. For each image, the researchers manipulate each coordinate in the StyleSpace to measure its effect on the classification output, identifying attributes that significantly change the prediction. This process results in counterfactual visualizations, where each attribute is independently adjusted to show its impact.

    Finally, an interdisciplinary panel of experts, including clinicians, social scientists, and machine learning engineers, reviews these visualizations. This panel interprets the attributes to determine whether they correspond to known clinical features, potential biases, or novel findings. The panel’s insights are then used to generate hypotheses for further research, considering both biological and socio-cultural determinants of health.

    In conclusion, the proposed framework enhances the explainability of AI models in medical imaging. By generating counterfactual images and visualizing the attributes that affect classifier predictions, this approach provides a deeper understanding of the “what” behind the model’s decisions. The interdisciplinary panel involvement, beyond physiology or pathophysiology, ensures that these insights are rigorously interpreted, accounting for potential biases and suggesting new avenues for scientific inquiry. 

    Check out the Paper and Blog. All credit for this research goes to the researchers of this project. Also, don’t forget to follow us on Twitter. Join our Telegram Channel, Discord Channel, and LinkedIn Group.

    If you like our work, you will love our newsletter..

    Don’t Forget to join our 44k+ ML SubReddit

    The post Google AI Proposes a Machine Learning Framework for Understanding AI Models in Medical Imaging appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleABodyBuilder3: A Scalable and Precise Model for Antibody Structure Prediction
    Next Article Deciphering Doubt: Navigating Uncertainty in LLM Responses

    Related Posts

    Security

    Nmap 7.96 Launches with Lightning-Fast DNS and 612 Scripts

    May 17, 2025
    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-40906 – MongoDB BSON Serialization BSON::XS Multiple Vulnerabilities

    May 17, 2025
    Leave A Reply Cancel Reply

    Continue Reading

    Commvault Confirms 0-Day Exploit Allowed Hackers Access to Its Azure Environment

    Security

    Claude 3 Opus blows all LLMs away in book-length summarization

    Artificial Intelligence

    Maximising the impact of our breakthroughs

    Artificial Intelligence

    CVE-2023-37517 – HCL Leap Cross-Site Scripting (XSS)

    Common Vulnerabilities and Exposures (CVEs)
    GetResponse

    Highlights

    CVE-2025-24977: Critical RCE Flaw in OpenCTI Platform Exposes Infrastructure to Root-Level Attacks

    May 7, 2025

    CVE-2025-24977: Critical RCE Flaw in OpenCTI Platform Exposes Infrastructure to Root-Level Attacks

    A critical security vulnerability has been identified in the OpenCTI Platform, an open-source solution used by organizations to manage cyber threat intelligence. The vulnerability, tracked as CVE-2025 …
    Read more

    Published Date:
    May 07, 2025 (3 hours, 36 minutes ago)

    Vulnerabilities has been mentioned in this article.

    CVE-2025-24977

    CVE-2025-3958 – Withstars Books-Management-System Cross-Site Scripting Vulnerability

    April 27, 2025

    ASUS VivoBook S 15 Copilot+ PC Review: Is the Snapdragon X Elite hype real?

    June 18, 2024

    20 TypeScript Tips for Cleaner, More Efficient Code in 2024

    November 7, 2024
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.