Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Designing Better UX For Left-Handed People

      July 25, 2025

      This week in AI dev tools: Gemini 2.5 Flash-Lite, GitLab Duo Agent Platform beta, and more (July 25, 2025)

      July 25, 2025

      Tenable updates Vulnerability Priority Rating scoring method to flag fewer vulnerabilities as critical

      July 24, 2025

      Google adds updated workspace templates in Firebase Studio that leverage new Agent mode

      July 24, 2025

      I ran with the Apple Watch and Samsung Watch 8 – here’s the better AI coach

      July 26, 2025

      8 smart home gadgets that instantly upgraded my house (and why they work)

      July 26, 2025

      I tested Panasonic’s new affordable LED TV model – here’s my brutally honest buying advice

      July 26, 2025

      OpenAI teases imminent GPT-5 launch. Here’s what to expect

      July 26, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      NativePHP Is Entering Its Next Phase

      July 26, 2025
      Recent

      NativePHP Is Entering Its Next Phase

      July 26, 2025

      Medical Card Generator Android App Project Using SQLite

      July 26, 2025

      The details of TC39’s last meeting

      July 26, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Elden Ring Nightreign’s Patch 1.02 update next week is adding a feature we’ve all been waiting for since launch — and another I’ve been begging for, too

      July 26, 2025
      Recent

      Elden Ring Nightreign’s Patch 1.02 update next week is adding a feature we’ve all been waiting for since launch — and another I’ve been begging for, too

      July 26, 2025

      The next time you look at Microsoft Copilot, it may look back — but who asked for this?

      July 26, 2025

      5 Open Source Apps You Can use for Seamless File Transfer Between Linux and Android

      July 26, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»DualDistill and Agentic-R1: How AI Combines Natural Language and Tool Use for Superior Math Problem Solving

    DualDistill and Agentic-R1: How AI Combines Natural Language and Tool Use for Superior Math Problem Solving

    July 25, 2025

    Existing long-CoT reasoning models have achieved state-of-the-art performance in mathematical reasoning by generating reasoning trajectories with iterative self-verification and refinement. However, open-source long-CoT models depend only on natural language reasoning traces, making them computationally expensive and prone to errors without verification mechanisms. Although tool-aided reasoning provides greater efficiency and reliability for large-scale numerical computations through frameworks like OpenHands that integrate code interpreters, these agentic approaches struggle with abstract or conceptually complex reasoning problems.

    DualDistill Framework and Agentic-R1 Model

    Researchers from Carnegie Mellon University have proposed DualDistill, a distillation framework that combines trajectories from two complementary teachers to create a unified student model. The framework utilizes one reasoning-oriented teacher and one tool-augmented teacher to develop Agentic-R1, a model that learns to select the most appropriate strategy for each problem type dynamically. Agentic-R1 executes code for arithmetic and algorithmic tasks while employing natural language reasoning for abstract problems. DualDistill utilizes trajectory composition to distill knowledge from both complementary teachers, followed by self-distillation. Moreover, researchers used OpenHands as the agentic reasoning teacher, and DeepSeek-R1 as the text-based reasoning teacher.

    https://arxiv.org/abs/2507.05707

    Evaluation and Benchmarks

    The proposed method is evaluated across multiple benchmarks like DeepMath-L and Combinatorics300 to test various aspects of mathematical reasoning. It is compared against the baselines DeepSeek-R1-Distill and Qwen-2.5-Instruct. The student model, Agentic-R1, shows great performance improvements that benefit from both agentic and reasoning strategies. It outperforms two similarly sized models, each specializing in tool-assisted (Qwen2.5-7B-Instruct) or pure reasoning (Deepseek-R1-Distill7B) strategies. Agentic-R1 outperforms tool-based models by intelligently using reasoning strategies when required, while maintaining greater efficiency compared to pure reasoning models on standard mathematical tasks.

    Qualitative Analysis and Tool Usage Patterns

    Qualitative examples show that Agentic-R1 exhibits intelligent tool usage patterns, activating code execution tools in 79.2% of computationally demanding Combinatorics300 problems, while reducing activation to 52.0% for the simpler AMC dataset problems. Agentic-R1 learns to invoke tools appropriately through supervised fine-tuning alone, without explicit instruction, effectively balancing computational efficiency and reasoning accuracy.

    Robustness to Imperfect Teachers

    The framework remains effective even when guided by imperfect teachers. For instance, the agentic teacher achieves only 48.4% accuracy on Combinatorics300, yet the student model improved from 44.7% to 50.9%, ultimately outperforming the teacher.

    Conclusion

    In summary, the DualDistill framework effectively combines the strengths of natural language reasoning and tool-assisted problem solving by distilling complementary knowledge from two specialized teacher models into a single versatile student model, Agentic-R1. Through trajectory composition and self-distillation, Agentic-R1 learns to dynamically select the most appropriate strategy for each problem, balancing precision and computational efficiency. Evaluations across diverse mathematical reasoning benchmarks demonstrate that Agentic-R1 outperforms both pure reasoning and tool-based models, even when learning from imperfect teachers. This work highlights a promising approach to building adaptable AI agents capable of integrating heterogeneous problem-solving strategies for more robust and efficient reasoning.


    Check out the Paper and GitHub Page. All credit for this research goes to the researchers of this project.

    Meet the AI Dev Newsletter read by 40k+ Devs and Researchers from NVIDIA, OpenAI, DeepMind, Meta, Microsoft, JP Morgan Chase, Amgen, Aflac, Wells Fargo and 100s more [SUBSCRIBE NOW]

    The post DualDistill and Agentic-R1: How AI Combines Natural Language and Tool Use for Superior Math Problem Solving appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleAlibaba Qwen Introduces Qwen3-MT: Next-Gen Multilingual Machine Translation Powered by Reinforcement Learning
    Next Article Unsupervised System 2 Thinking: The Next Leap in Machine Learning with Energy-Based Transformers

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    July 26, 2025
    Machine Learning

    RoboBrain 2.0: The Next-Generation Vision-Language Model Unifying Embodied AI for Advanced Robotics

    July 26, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    “We are not tied to a console release.” We got Hollow Knight: Silksong release date news after all, but it had nothing to do with Xbox Ally

    News & Updates

    CVE-2025-2932 – JKDEVKIT WordPress Arbitrary File Deletion Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    Atomia DNS – multi tenant system

    Linux

    CVE-2025-3876 – WooCommerce WordPress Privilege Escalation Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    Highlights

    Development

    CERT-UA Reports Cyberattacks Targeting Ukrainian State Systems with WRECKSTEEL Malware

    April 4, 2025

    The Computer Emergency Response Team of Ukraine (CERT-UA) has revealed that no less than three…

    CVE-2025-28169 – BYD QIN PLUS DM-i Dilink OS Unencrypted Broadcast Vulnerability

    April 23, 2025

    CVE-2025-45880 – Miliaris Amigdala XSS

    June 17, 2025

    CVE-2025-4659 – Salesforce WordPress Plugin Full Path Disclosure Vulnerability

    May 30, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.