Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      Designing Better UX For Left-Handed People

      July 25, 2025

      This week in AI dev tools: Gemini 2.5 Flash-Lite, GitLab Duo Agent Platform beta, and more (July 25, 2025)

      July 25, 2025

      Tenable updates Vulnerability Priority Rating scoring method to flag fewer vulnerabilities as critical

      July 24, 2025

      Google adds updated workspace templates in Firebase Studio that leverage new Agent mode

      July 24, 2025

      I ran with the Apple Watch and Samsung Watch 8 – here’s the better AI coach

      July 26, 2025

      8 smart home gadgets that instantly upgraded my house (and why they work)

      July 26, 2025

      I tested Panasonic’s new affordable LED TV model – here’s my brutally honest buying advice

      July 26, 2025

      OpenAI teases imminent GPT-5 launch. Here’s what to expect

      July 26, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      NativePHP Is Entering Its Next Phase

      July 26, 2025
      Recent

      NativePHP Is Entering Its Next Phase

      July 26, 2025

      Medical Card Generator Android App Project Using SQLite

      July 26, 2025

      The details of TC39’s last meeting

      July 26, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      Elden Ring Nightreign’s Patch 1.02 update next week is adding a feature we’ve all been waiting for since launch — and another I’ve been begging for, too

      July 26, 2025
      Recent

      Elden Ring Nightreign’s Patch 1.02 update next week is adding a feature we’ve all been waiting for since launch — and another I’ve been begging for, too

      July 26, 2025

      The next time you look at Microsoft Copilot, it may look back — but who asked for this?

      July 26, 2025

      5 Open Source Apps You Can use for Seamless File Transfer Between Linux and Android

      July 26, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»GPT-4o Understands Text, But Does It See Clearly? A Benchmarking Study of MFMs on Vision Tasks

    GPT-4o Understands Text, But Does It See Clearly? A Benchmarking Study of MFMs on Vision Tasks

    July 24, 2025

    Multimodal foundation models (MFMs) like GPT-4o, Gemini, and Claude have shown rapid progress recently, especially in public demos. While their language skills are well studied, their true ability to understand visual information remains unclear. Most benchmarks used today focus heavily on text-based tasks, such as VQA or classification, which often reflect language strengths more than visual capabilities. These tests also require text outputs, making it difficult to fairly assess visual skills or compare MFMs with vision-specific models. Moreover, critical aspects such as 3D perception, segmentation, and grouping, which are core to visual understanding, are still largely overlooked in current evaluations. 

    MFMs have demonstrated strong performance in tasks that combine visual and language understanding, such as captioning and visual question answering. However, their effectiveness in tasks that require detailed visual comprehension remains unclear. Most current benchmarks rely on text-based outputs, making it difficult to compare MFMs with vision-only models fairly. Some studies attempt to adapt vision datasets for MFMs by converting annotations into text, but this limitation restricts evaluation to language outputs. Prompting strategies have also been explored to help MFMs tackle visual tasks by breaking them into manageable subtasks, though reproducibility remains a challenge in some cases. 

    Researchers at EPFL evaluated several popular multimodal foundation models—such as GPT-4o, Gemini 2.0 Flash, and Claude 3.5 Sonnet on core computer vision tasks, including segmentation, object detection, and depth prediction, using datasets like COCO and ImageNet. Since most MFMs are designed to output text and are only accessible via APIs, they developed a prompt-chaining framework to translate these visual tasks into text-compatible formats. Their findings show that while MFMs are competent generalists, they fall short of specialized vision models, especially in geometric tasks. GPT-4o stood out, performing best in 4 out of 6 tasks. The evaluation toolkit will be open-sourced. 

    To evaluate MFMs on vision tasks, the study designed a prompt chaining strategy, breaking complex tasks into simpler, language-friendly subtasks. For example, instead of predicting bounding boxes directly, the model first identifies present objects, then locates them through recursive image cropping. For segmentation and grouping, images are divided into superpixels, which are easier to label and compare. Depth and surface normals are estimated using pairwise rankings of superpixel regions. This modular design leverages MFMs’ strength in classification and similarity, while calibration controls ensure fair comparisons. The method is flexible, and performance improves with finer-grained prompting. 

    The study evaluates various MFMs, including GPT-4, Gemini Flash, and Claude 3.5, across multiple tasks, such as image classification, object detection, and segmentation. Using datasets like ImageNet, COCO, and Hypersim, results show GPT-4o reaching 77.2% on ImageNet and 60.62 AP50 for object detection, outperformed by specialist models like ViT-G (90.94%) and Co-DETR (91.30%). Semantic segmentation results show GPT-4o at 44.89 mIoU, while OneFormer leads with 65.52. MFMs handle distribution shifts reasonably well but lag on precise visual reasoning. The study also introduces prompt chaining and oracle baselines to evaluate upper-bound performance. 

    In conclusion, the study introduces a benchmarking framework to assess the visual capabilities of MFMs, such as GPT-4o, Gemini, and Claude, by converting standard vision tasks into prompt-based formats. Findings show MFMs perform better on semantic tasks than geometric ones, with GPT-4o leading overall. However, all MFMs lag significantly behind task-specific vision models. Despite being generalists trained primarily on image-text data, they show promising progress, especially newer reasoning models, such as o3, on 3D tasks. Limitations include high inference cost and prompt sensitivity. Still, this framework provides a unified approach to evaluating MFMs’ visual understanding, laying the groundwork for future advancements. 


    Check out the Paper, GitHub Page and Project. All credit for this research goes to the researchers of this project.

    Meet the AI Dev Newsletter read by 40k+ Devs and Researchers from NVIDIA, OpenAI, DeepMind, Meta, Microsoft, JP Morgan Chase, Amgen, Aflac, Wells Fargo and 100s more [SUBSCRIBE NOW]

    The post GPT-4o Understands Text, But Does It See Clearly? A Benchmarking Study of MFMs on Vision Tasks appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleThis AI Paper Introduces PyVision: A Python-Centric Framework Where AI Writes Tools as It Thinks
    Next Article SYNCOGEN: A Machine Learning Framework for Synthesizable 3D Molecular Generation Through Joint Graph and Coordinate Modeling

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    July 26, 2025
    Machine Learning

    RoboBrain 2.0: The Next-Generation Vision-Language Model Unifying Embodied AI for Advanced Robotics

    July 26, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    Microsoft might kill the Surface Laptop Studio as production is quietly halted

    News & Updates

    Syntax Highlighting using the CSS Custom Highlight API

    Development

    xxHash – non-cryptographic hash algorithm

    Linux

    Code Your Own Llama 4 LLM from Scratch

    Development

    Highlights

    Apple’s AI Race: Is the Tech Giant Falling Behind?

    June 2, 2025

    Apple’s AI Race: Is the Tech Giant Falling Behind?

    In his “Power On” column, Bloomberg journalist Mark Gurman reported that some Apple employees have expressed a sense of pessimism regarding the company’s progress in artificial intelligence developmen …
    Read more

    Published Date:
    Jun 02, 2025 (4 hours, 38 minutes ago)

    Vulnerabilities has been mentioned in this article.

    CVE-2025-40909

    Understanding Vultr Content Delivery Networks (CDNs)

    July 16, 2025

    CVE-2025-46420 – Libsoup Memory Leak Vulnerability

    April 24, 2025

    CVE-2025-6475 – “SourceCodester Student Result Management System Cross Site Scripting Vulnerability”

    June 22, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.