Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      The Ultimate Guide to Node.js Development Pricing for Enterprises

      July 29, 2025

      Stack Overflow: Developers’ trust in AI outputs is worsening year over year

      July 29, 2025

      Web Components: Working With Shadow DOM

      July 28, 2025

      Google’s new Opal tool allows users to create mini AI apps with no coding required

      July 28, 2025

      5 preinstalled apps you should delete from your Samsung phone immediately

      July 30, 2025

      Ubuntu Linux lagging? Try my 10 go-to tricks to speed it up

      July 30, 2025

      How I survived a week with this $130 smartwatch instead of my Garmin and Galaxy Ultra

      July 30, 2025

      YouTube is using AI to verify your age now – and if it’s wrong, that’s on you to fix

      July 30, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Time-Controlled Data Processing with Laravel LazyCollection Methods

      July 30, 2025
      Recent

      Time-Controlled Data Processing with Laravel LazyCollection Methods

      July 30, 2025

      Create Apple Wallet Passes in Laravel

      July 30, 2025

      The Laravel Idea Plugin is Now FREE for PhpStorm Users

      July 30, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      New data shows Xbox is utterly dominating PlayStation’s storefront — accounting for 60% of the Q2 top 10 game sales spots

      July 30, 2025
      Recent

      New data shows Xbox is utterly dominating PlayStation’s storefront — accounting for 60% of the Q2 top 10 game sales spots

      July 30, 2025

      Opera throws Microsoft to Brazil’s watchdogs for promoting Edge as your default browser — “Microsoft thwarts‬‭ browser‬‭ competition‬‭‬‭ at‬‭ every‬‭ turn”

      July 30, 2025

      Activision once again draws the ire of players for new Diablo Immortal marketing that appears to have been made with generative AI

      July 30, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Artificial Intelligence»Melding data, systems, and society

    Melding data, systems, and society

    June 10, 2025

    Research that crosses the traditional boundaries of academic disciplines, and boundaries between academia, industry, and government, is increasingly widespread, and has sometimes led to the spawning of significant new disciplines. But Munther Dahleh, a professor of electrical engineering and computer science at MIT, says that such multidisciplinary and interdisciplinary work often suffers from a number of shortcomings and handicaps compared to more traditionally focused disciplinary work.

    But increasingly, he says, the profound challenges that face us in the modern world — including climate change, biodiversity loss, how to control and regulate artificial intelligence systems, and the identification and control of pandemics — require such meshing of expertise from very different areas, including engineering, policy, economics, and data analysis. That realization is what guided him, a decade ago, in the creation of MIT’s pioneering Institute for Data, Systems and Society (IDSS), aiming to foster a more deeply integrated and lasting set of collaborations than the usual temporary and ad hoc associations that occur for such work.

    Dahleh has now written a book detailing the process of analyzing the landscape of existing disciplinary divisions at MIT and conceiving of a way to create a structure aimed at breaking down some of those barriers in a lasting and meaningful way, in order to bring about this new institute. The book, “Data, Systems, and Society: Harnessing AI for Societal Good,” was published this March by Cambridge University Press.

    The book, Dahleh says, is his attempt “to describe our thinking that led us to the vision of the institute. What was the driving vision behind it?” It is aimed at a number of different audiences, he says, but in particular, “I’m targeting students who are coming to do research that they want to address societal challenges of different types, but utilizing AI and data science. How should they be thinking about these problems?”

    A key concept that has guided the structure of the institute is something he refers to as “the triangle.” This refers to the interaction of three components: physical systems, people interacting with those physical systems, and then regulation and policy regarding those systems. Each of these affects, and is affected by, the others in various ways, he explains. “You get a complex interaction among these three components, and then there is data on all these pieces. Data is sort of like a circle that sits in the middle of this triangle and connects all these pieces,” he says.

    When tackling any big, complex problem, he suggests, it is useful to think in terms of this triangle. “If you’re tackling a societal problem, it’s very important to understand the impact of your solution on society, on the people, and the role of people in the success of your system,” he says. Often, he says, “solutions and technology have actually marginalized certain groups of people and have ignored them. So the big message is always to think about the interaction between these components as you think about how to solve problems.”

    As a specific example, he cites the Covid-19 pandemic. That was a perfect example of a big societal problem, he says, and illustrates the three sides of the triangle: there’s the biology, which was little understood at first and was subject to intensive research efforts; there was the contagion effect, having to do with social behavior and interactions among people; and there was the decision-making by political leaders and institutions, in terms of shutting down schools and companies or requiring masks, and so on. “The complex problem we faced was the interaction of all these components happening in real-time, when the data wasn’t all available,” he says.

    Making a decision, for example shutting schools or businesses, based on controlling the spread of the disease, had immediate effects on economics and social well-being and health and education, “so we had to weigh all these things back into the formula,” he says. “The triangle came alive for us during the pandemic.” As a result, IDSS “became a convening place, partly because of all the different aspects of the problem that we were interested in.”

    Examples of such interactions abound, he says. Social media and e-commerce platforms are another case of “systems built for people, and they have a regulation aspect, and they fit into the same story if you’re trying to understand misinformation or the monitoring of misinformation.”

    The book presents many examples of ethical issues in AI, stressing that they must be handled with great care. He cites self-driving cars as an example, where programming decisions in dangerous situations can appear ethical but lead to negative economic and humanitarian outcomes. For instance, while most Americans support the idea that a car should sacrifice its driver rather than kill an innocent person, they wouldn’t buy such a car. This reluctance lowers adoption rates and ultimately increases casualties.

    In the book, he explains the difference, as he sees it, between the concept of “transdisciplinary” versus typical cross-disciplinary or interdisciplinary research. “They all have different roles, and they have been successful in different ways,” he says. The key is that most such efforts tend to be transitory, and that can limit their societal impact. The fact is that even if people from different departments work together on projects, they lack a structure of shared journals, conferences, common spaces and infrastructure, and a sense of community. Creating an academic entity in the form of IDSS that explicitly crosses these boundaries in a fixed and lasting way was an attempt to address that lack. “It was primarily about creating a culture for people to think about all these components at the same time.”

    He hastens to add that of course such interactions were already happening at MIT, “but we didn’t have one place where all the students are all interacting with all of these principles at the same time.” In the IDSS doctoral program, for instance, there are 12 required core courses — half of them from statistics and optimization theory and computation, and half from the social sciences and humanities.

    Dahleh stepped down from the leadership of IDSS two years ago to return to teaching and to continue his research. But as he reflected on the work of that institute and his role in bringing it into being, he realized that unlike his own academic research, in which every step along the way is carefully documented in published papers, “I haven’t left a trail” to document the creation of the institute and the thinking behind it. “Nobody knows what we thought about, how we thought about it, how we built it.” Now, with this book, they do.

    The book, he says, is “kind of leading people into how all of this came together, in hindsight. I want to have people read this and sort of understand it from a historical perspective, how something like this happened, and I did my best to make it as understandable and simple as I could.”

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleInroads to personalized AI trip planning
    Next Article How we really judge AI

    Related Posts

    Artificial Intelligence

    Scaling Up Reinforcement Learning for Traffic Smoothing: A 100-AV Highway Deployment

    July 29, 2025
    Repurposing Protein Folding Models for Generation with Latent Diffusion
    Artificial Intelligence

    Repurposing Protein Folding Models for Generation with Latent Diffusion

    July 29, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    CVE-2025-6604 – SourceCodester Best Salon Management System SQL Injection Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    Hazy Hawk Exploits DNS Records to Hijack CDC, Corporate Domains for Malware Delivery

    Development

    Preparing for the Unthinkable: Safeguarding People and Productivity During India-Pakistan Conflicts

    Development

    Concurrency & Asynchronous Programming in Swift [SUBSCRIBER]

    Learning Resources

    Highlights

    Linux

    Rilasciata Clonezilla Live 3.2.1-28: tutte le novità della distribuzione GNU/Linux per il backup e la clonazione dei dischi

    May 7, 2025

    Clonezilla Live è una distribuzione GNU/Linux minimalista, avviabile da supporti rimovibili, pensata per la clonazione…

    CVE-2025-24342 – CtrlX OS Username Guessing Information Disclosure Vulnerability

    April 30, 2025

    CVE-2024-24915 – Check Point SmartConsole Unsecured Credentials

    June 29, 2025

    quick-lint-js – finds bugs in JavaScript programs

    July 27, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.