Close Menu
    DevStackTipsDevStackTips
    • Home
    • News & Updates
      1. Tech & Work
      2. View All

      The Ultimate Guide to Node.js Development Pricing for Enterprises

      July 29, 2025

      Stack Overflow: Developers’ trust in AI outputs is worsening year over year

      July 29, 2025

      Web Components: Working With Shadow DOM

      July 28, 2025

      Google’s new Opal tool allows users to create mini AI apps with no coding required

      July 28, 2025

      5 preinstalled apps you should delete from your Samsung phone immediately

      July 30, 2025

      Ubuntu Linux lagging? Try my 10 go-to tricks to speed it up

      July 30, 2025

      How I survived a week with this $130 smartwatch instead of my Garmin and Galaxy Ultra

      July 30, 2025

      YouTube is using AI to verify your age now – and if it’s wrong, that’s on you to fix

      July 30, 2025
    • Development
      1. Algorithms & Data Structures
      2. Artificial Intelligence
      3. Back-End Development
      4. Databases
      5. Front-End Development
      6. Libraries & Frameworks
      7. Machine Learning
      8. Security
      9. Software Engineering
      10. Tools & IDEs
      11. Web Design
      12. Web Development
      13. Web Security
      14. Programming Languages
        • PHP
        • JavaScript
      Featured

      Time-Controlled Data Processing with Laravel LazyCollection Methods

      July 30, 2025
      Recent

      Time-Controlled Data Processing with Laravel LazyCollection Methods

      July 30, 2025

      Create Apple Wallet Passes in Laravel

      July 30, 2025

      The Laravel Idea Plugin is Now FREE for PhpStorm Users

      July 30, 2025
    • Operating Systems
      1. Windows
      2. Linux
      3. macOS
      Featured

      New data shows Xbox is utterly dominating PlayStation’s storefront — accounting for 60% of the Q2 top 10 game sales spots

      July 30, 2025
      Recent

      New data shows Xbox is utterly dominating PlayStation’s storefront — accounting for 60% of the Q2 top 10 game sales spots

      July 30, 2025

      Opera throws Microsoft to Brazil’s watchdogs for promoting Edge as your default browser — “Microsoft thwarts‬‭ browser‬‭ competition‬‭‬‭ at‬‭ every‬‭ turn”

      July 30, 2025

      Activision once again draws the ire of players for new Diablo Immortal marketing that appears to have been made with generative AI

      July 30, 2025
    • Learning Resources
      • Books
      • Cheatsheets
      • Tutorials & Guides
    Home»Development»Machine Learning»Sensor-Invariant Tactile Representation for Zero-Shot Transfer Across Vision-Based Tactile Sensors

    Sensor-Invariant Tactile Representation for Zero-Shot Transfer Across Vision-Based Tactile Sensors

    April 8, 2025
    Sensor-Invariant Tactile Representation for Zero-Shot Transfer Across Vision-Based Tactile Sensors

    Tactile sensing is a crucial modality for intelligent systems to perceive and interact with the physical world. The GelSight sensor and its variants have emerged as influential tactile technologies, providing detailed information about contact surfaces by transforming tactile data into visual images. However, vision-based tactile sensing lacks transferability between sensors due to design and manufacturing variations, which result in significant differences in tactile signals. Minor differences in optical design or manufacturing processes can create substantial discrepancies in sensor output, causing machine learning models trained on one sensor to perform poorly when applied to others.

    Computer vision models have been widely applied to vision-based tactile images due to their inherently visual nature. Researchers have adapted representation learning methods from the vision community, with contrastive learning being popular for developing tactile and visual-tactile representations for specific tasks. Auto-encoding representation approaches are also explored, with some researchers utilizing Masked Auto-Encoder (MAE) to learn tactile representations. Methods like general-purpose multimodal representations utilize multiple tactile datasets in LLM frameworks, encoding sensor types as tokens. Despite these efforts, current methods often require large datasets, treat sensor types as fixed categories, and lack the flexibility to generalize to unseen sensors.

    Researchers from the University of Illinois Urbana-Champaign proposed Sensor-Invariant Tactile Representations (SITR), a tactile representation to transfer across various vision-based tactile sensors in a zero-shot manner. It is based on the premise that achieving sensor transferability requires learning effective sensor-invariant representations through exposure to diverse sensor variations. It uses three core innovations: utilizing easy-to-acquire calibration images to characterize individual sensors with a transformer encoder, utilizing supervised contrastive learning to emphasize geometric aspects of tactile data across multiple sensors, and developing a large-scale synthetic dataset that contains 1M examples across 100 sensor configurations.

    Researchers used the tactile image and a set of calibration images for the sensor as inputs for the network. The sensor background is subtracted from all input images to isolate the pixel-wise color changes. Following Vision Transformer (ViT), these images are linearly projected into tokens, with calibration images requiring tokenization only once per sensor. Further, two supervision signals guide the training process: a pixel-wise normal map reconstruction loss for the output patch tokens and a contrastive loss for the class token. During pre-training, a lightweight decoder reconstructs the contact surface as a normal map from the encoder’s output. Moreover, SITR  employs Supervised Contrastive Learning (SCL), extending traditional contrastive approaches by utilizing label information to define similarity.

    In object classification tests using the researchers’ real-world dataset, SITR outperforms all baseline models when transferred across different sensors. While most models perform well in no-transfer settings, they fail to generalize when tested on distinct sensors. It shows SITR’s ability to capture meaningful, sensor-invariant features that remain robust despite changes in the sensor domain. In pose estimation tasks, where the goal is to estimate 3-DoF position changes using initial and final tactile images, SITR reduces the Root Mean Square Error by approximately 50% compared to baselines. Unlike classification results, ImageNet pre-training only marginally improves pose estimation performance, showing that features learned from natural images may not transfer effectively to tactile domains for precise regression tasks.

    In this paper, researchers introduced SITR, a tactile representation framework that transfers across various vision-based tactile sensors in a zero-shot manner. They constructed large-scale, sensor-aligned datasets using synthetic and real-world data and developed a method to train SITR to capture dense, sensor-invariant features. The SITR represents a step toward a unified approach to tactile sensing, where models can generalize seamlessly across different sensor types without retraining or fine-tuning. This breakthrough has the potential to accelerate advancements in robotic manipulation and tactile research by removing a key barrier to the adoption and implementation of these promising sensor technologies.


    Check out the Paper and Code. All credit for this research goes to the researchers of this project. Also, feel free to follow us on Twitter and don’t forget to join our 85k+ ML SubReddit.

    🔥 [Register Now] miniCON Virtual Conference on OPEN SOURCE AI: FREE REGISTRATION + Certificate of Attendance + 3 Hour Short Event (April 12, 9 am- 12 pm PST) + Hands on Workshop [Sponsored]

    The post Sensor-Invariant Tactile Representation for Zero-Shot Transfer Across Vision-Based Tactile Sensors appeared first on MarkTechPost.

    Source: Read More 

    Facebook Twitter Reddit Email Copy Link
    Previous ArticleBuild an enterprise synthetic data strategy using Amazon Bedrock
    Next Article This AI Paper Introduces an LLM+FOON Framework: A Graph-Validated Approach for Robotic Cooking Task Planning from Video Instructions

    Related Posts

    Machine Learning

    How to Evaluate Jailbreak Methods: A Case Study with the StrongREJECT Benchmark

    July 29, 2025
    Machine Learning

    Amazon Develops an AI Architecture that Cuts Inference Time 30% by Activating Only Relevant Neurons

    July 29, 2025
    Leave A Reply Cancel Reply

    For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

    Continue Reading

    CVE-2025-46715 – Sandboxie Kernel Pointer Write Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-5110 – FreeFloat FTP Server Buffer Overflow Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    CVE-2025-47684 – Smaily for WP CSRF Vulnerability

    Common Vulnerabilities and Exposures (CVEs)

    ChatGPT Plus is free for students now – how to grab this deal before finals

    News & Updates

    Highlights

    CVE-2025-4083 – Firefox JavaScript URI Isolation Bypass

    April 29, 2025

    CVE ID : CVE-2025-4083

    Published : April 29, 2025, 2:15 p.m. | 1 hour, 48 minutes ago

    Description : A process isolation vulnerability in Firefox stemmed from improper handling of javascript: URIs, which could allow content to execute in the top-level document’s process instead of the intended frame, potentially enabling a sandbox escape. This vulnerability affects Firefox
    Severity: 0.0 | NA

    Visit the link for more details, such as CVSS details, affected products, timeline, and more…

    Training LLM Agents Just Got More Stable: Researchers Introduce StarPO-S and RAGEN to Tackle Multi-Turn Reasoning and Collapse in Reinforcement Learning

    May 2, 2025

    CVE-2025-48905 – Arkweb V8 Wasm Exception Capture Vulnerability

    June 6, 2025

    Gamers continue to make the switch to Windows 11 — and not just from Windows 10, either

    July 3, 2025
    © DevStackTips 2025. All rights reserved.
    • Contact
    • Privacy Policy

    Type above and press Enter to search. Press Esc to cancel.